Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Vera Tonić"'
Autor:
Vera Tonić, Leonard R. Rubin
We present new, unified proofs for the cell-like, $\mathbb{Z}/p$-, and $\mathbb{Q}$-resolution theorems. Our arguments employ extensions that are much simpler then those used by our predecessors. The techniques allow us to solve problems involving co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e970877e2b49a2bd2b5459ef95b2808
Autor:
Vera Tonić, Leonard R. Rubin
Publikováno v:
Glasnik matematički
Volume 48
Issue 2
Volume 48
Issue 2
We prove the following Theorem: Let X be a nonempty compact metrizable space, let $l_1 \leq l_2 \leq...$ be a sequence of natural numbers, and let $X_1 \subset X_2 \subset...$ be a sequence of nonempty closed subspaces of X such that for each k in N,
Autor:
Vera Tonić
In the paper titled “Bockstein basis and resolution theorems in extension theory” (Tonic, 2010 [10] ), we stated a theorem that we claimed to be a generalization of the Edwards–Walsh resolution theorem. The goal of this note is to show that the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::321a511cc2c721b1186a1d7446bf327d
https://www.bib.irb.hr/1032325
https://www.bib.irb.hr/1032325
Autor:
Vera Tonić
We prove a generalization of the Edwards-Walsh Resolution Theorem: Theorem: Let G be an abelian group for which $P_G$ equals the set of all primes $\mathbb{P}$, where $P_G=\{p \in \mathbb{P}: \Z_{(p)}\in$ Bockstein Basis $ \sigma(G)\}$. Let n in N an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::36ac099261a60bb308d8352eb9fd97d2
https://www.bib.irb.hr/1032316
https://www.bib.irb.hr/1032316