Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Vera Serganova"'
Publikováno v:
Journal of the Indian Institute of Science. 102:961-1000
Publikováno v:
Transformation Groups. 27:1475-1514
Let (V, ω) be an orthosymplectic ℤ2-graded vector space and let 𝔤:= 𝔤𝔬𝔰𝔭 (V, ω) denote the Lie superalgebra of similitudes of (V, ω). It is known that as a 𝔤-module, the space (V ) of superpolynomials on V is completely reducib
Autor:
Elena Poletaeva, Vera Serganova
Publikováno v:
Journal of Algebra. 570:140-163
We classify irreducible representations of finite W-algebra for the queer Lie superalgebra Q ( n ) associated with the principal nilpotent coadjoint orbits. We use this classification and our previous results to obtain a classification of irreducible
Publikováno v:
Mathematical Research Letters. 28:1379-1418
Autor:
Ivan Penkov, Vera Serganova
Publikováno v:
Journal of Algebra. 532:152-182
We construct a new analogue of the BGG category O for the infinite-dimensional Lie algebras g = sl ( ∞ ) , o ( ∞ ) , sp ( ∞ ) . A main difference with the categories studied in [9] and [2] is that all objects of our category satisfy the large a
Autor:
Caroline Gruson, Vera Serganova
Publikováno v:
Representations of Reductive Groups. :155-169
Autor:
Vera Serganova
Publikováno v:
Representation Theory, Mathematical Physics, and Integrable Systems ISBN: 9783030781477
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::76cb8fd8e052fb7280c81675c7bd7c06
https://doi.org/10.1007/978-3-030-78148-4_19
https://doi.org/10.1007/978-3-030-78148-4_19
Autor:
Nikolay Grantcharov, Vera Serganova
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications.
We describe all blocks of the category of finite-dimensional $\mathfrak{q}(3)$-supermodules by providing their extension quivers. We also obtain two general results about the representation of $\mathfrak{q}(n)$: we show that the Ext quiver of the sta
Autor:
Iryna Kashuba, Vera Serganova
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
This paper completes description of categories of representations of finite-dimensional simple unital Jordan superalgebras over algebraically closed field of characteristic zero.
to appear in Advances in Mathematics
to appear in Advances in Mathematics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6bdeb794376571cf55703ed0c2e98954
Autor:
Vera Serganova, Maria Gorelik
Publikováno v:
Communications in Mathematical Physics. 364:635-654
We describe the category of integrable $${\mathfrak{sl}(1|n)^{(1)}}$$ -modules with the positive level and show that the irreducible modules provide the full set of irreducible representations for the corresponding simple vertex algebra.