Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Vera Lúcia Carbone"'
Publikováno v:
Mathematical Methods in the Applied Sciences. 46:5632-5664
Publikováno v:
Pacific Journal of Mathematics. 301:395-419
In this article we study the asymptotic behavior of solutions, in sense of global pullback attractors, of the evolution system $$ \begin{cases} u_{tt} +\eta\Delta^2 u+a(t)\Delta\theta=f(t,u), & t>\tau,\ x\in\Omega,\\ \theta_t-\kappa\Delta \theta-a(t)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dcc062169daeb35585d9bb6b30c0044e
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 74:4002-4011
This paper is concerned with upper semicontinuity of the family of attractors associated with nonlinear reaction–diffusion equations with principal part governed by a degenerate p -Laplacian in which the diffusion d λ blows up in localized regions
Continuity of the dynamics in a localized large diffusion problem with nonlinear boundary conditions
Publikováno v:
Journal of Mathematical Analysis and Applications. 356(1):69-85
This paper is concerned with singular perturbations in parabolic problems subjected to nonlinear Neumann boundary conditions. We consider the case for which the diffusion coefficient blows up in a subregion Ω 0 which is interior to the physical doma
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 68:515-535
In this paper we study the continuity of asymptotics of semilinear parabolic problems of the form u t − div ( p ( x ) ∇ u ) + λ u = f ( u ) in a bounded smooth domain Ω ⊂ R n with Dirichlet boundary conditions when the diffusion coefficient p
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper we consider the second-order parabolic problem (Pe) { u t e = ( p e ( x ) u x e ) x + c ( x ) u e + f ( u e ) in ( 0 , 1 ) ∂ u e ∂ n → + b ( x ) u e = g ( u e ) for x ∈ { 0 , 1 } where the diffusion coefficient becomes large in
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper we study one dimensional parabolic problems that arise from composite materials. We show that the eigenvalues and eigenfunctions of the associated linear unbounded operator have the Sturm–Liouville property and the nonincrease of the
Autor:
Vera Lucia Carbone, Marcelo Jose Dias Nascimento, Karina Schiabel-Silva, Ricardo Parreira da Silva
Publikováno v:
Electronic Journal of Differential Equations, Vol 2011, Iss 77,, Pp 1-13 (2011)
We consider the family of singularly nonautonomous plate equations with structural damping $$ u_{tt} + a(t,x)u_t - Delta u_t + (-Delta)^2 u + lambda u = f(u), $$ in a bounded domain $Omega subset mathbb{R}^n$, with Navier boundary conditions. When th
Externí odkaz:
https://doaj.org/article/51c978c69b72460fb306c46d0ed17b70