Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Verónica Becher"'
Publikováno v:
PLoS ONE, Vol 8, Iss 6, p e63915 (2013)
It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "speci
Externí odkaz:
https://doaj.org/article/f0b76d50b8c44d20adfa70590dde7f3f
Autor:
Verónica Becher, Gabriel Sac Himelfarb
Publikováno v:
Mathematics of Computation. 92:1453-1466
Years ago Zeev Rudnick defined the λ \lambda -Poisson generic sequences as the infinite sequences of symbols in a finite alphabet where the number of occurrences of long words in the initial segments follow the Poisson distribution with parameter λ
Autor:
Manfred G. Madritsch, Verónica Becher
Publikováno v:
Acta Arithmetica. 203:271-288
In 2008 or earlier, Michel Mend\`es France asked for an instance of a real number $x$ such that both $x$ and $1/x$ are simply normal to a given integer base $b$. We give a positive answer to this question by constructing a number $x$ such that both $
Autor:
Verónica Becher
Defined by Borel, a real number is normal to an integer base b ≥ 2 if in its base-b expansion every block of digits occurs with the same limiting frequency as every other block of the same length. We consider the problem of insertion in constructed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::78a725f79624e4da29d5e8fb54c64953
http://arxiv.org/abs/2106.00801
http://arxiv.org/abs/2106.00801
Autor:
Verónica Becher, Eda Cesaratto
We show that, in an alphabet of $n$ symbols, the number of words of length $n$ whose number of different symbols is away from $(1-1/e)n$, which is the value expected by the Poisson distribution, has exponential decay in $n$. We use Laplace's method f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5a43422d6565acc6e1642e186e431516
http://arxiv.org/abs/2105.12813
http://arxiv.org/abs/2105.12813
Autor:
Verónica Becher, Serge Grigorieff
We elaborate the notions of Martin-L\"of and Schnorr randomness for real numbers in terms of uniform distribution of sequences. We give a necessary condition for a real number to be Schnorr random expressed in terms of classical uniform distribution
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::54de3023fe35bf5981cdfdf32b7b4e8d
Publikováno v:
Transactions of the American Mathematical Society. 372:4425-4446
We give metric theorems for the property of Borel normality for real numbers under the assumption of digit dependencies in their expansion in a given integer base. We quantify precisely how much digit dependence can be allowed such that, still, almos
Publikováno v:
Monatshefte fur Mathematik, vol 185, iss 2
Monatshefte für Mathematik, vol 185, iss 2
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Becher, V; Reimann, J; & Slaman, TA. (2018). Irrationality exponent, Hausdorff dimension and effectivization. Monatshefte fur Mathematik, 185(2), 167-188. doi: 10.1007/s00605-017-1094-2. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/31m5k9h2
Monatshefte für Mathematik, vol 185, iss 2
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Becher, V; Reimann, J; & Slaman, TA. (2018). Irrationality exponent, Hausdorff dimension and effectivization. Monatshefte fur Mathematik, 185(2), 167-188. doi: 10.1007/s00605-017-1094-2. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/31m5k9h2
We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension. Let a be any real number greater than or equal to 2 and let b be any non-negative real less than or equal to 2/a. We
Autor:
Verónica Becher, Olivier Carton
Publikováno v:
Journal of Complexity
Journal of Complexity, Elsevier, 2019, 54, pp.101403-. ⟨10.1016/j.jco.2019.03.003⟩
Journal of Complexity, Elsevier, 2019, 54, pp.101403-. ⟨10.1016/j.jco.2019.03.003⟩
M. B. Levin used Sobol–Faure low discrepancy sequences with Pascal triangle matrices modulo 2 to construct, a real number x such that the first N terms of the sequence ( 2 n x mod 1 ) n ≥ 1 have discrepancy O ( ( log N ) 2 ∕ N ) . This is the l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1081a44ff06a953ee524dd70dc668402
https://hal.archives-ouvertes.fr/hal-03488341/file/S0885064X19300354.pdf
https://hal.archives-ouvertes.fr/hal-03488341/file/S0885064X19300354.pdf
M. Levin defined a real number x that satisfies that the sequence of the fractional parts of $$(2^n x)_{n\ge 1}$$ are such that the first N terms have discrepancy $$O((\log N)^2/ N)$$ , which is the smallest discrepancy known for this kind of paramet
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1f64304c46560dcfd0f0e2964bcc4c52
https://link.springer.com/article/10.1007/s00013-019-01336-3
https://link.springer.com/article/10.1007/s00013-019-01336-3