Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Venkat, Anand"'
Autor:
Ye, Fangke, Zhou, Shengtian, Venkat, Anand, Marcus, Ryan, Tatbul, Nesime, Tithi, Jesmin Jahan, Hasabnis, Niranjan, Petersen, Paul, Mattson, Timothy, Kraska, Tim, Dubey, Pradeep, Sarkar, Vivek, Gottschlich, Justin
Code semantics similarity can be used for many tasks such as code recommendation, automated software defect correction, and clone detection. Yet, the accuracy of such systems has not yet reached a level of general purpose reliability. To help address
Externí odkaz:
http://arxiv.org/abs/2006.05265
Autor:
Ye, Fangke, Zhou, Shengtian, Venkat, Anand, Marcus, Ryan, Petersen, Paul, Tithi, Jesmin Jahan, Mattson, Tim, Kraska, Tim, Dubey, Pradeep, Sarkar, Vivek, Gottschlich, Justin
The simplified parse tree (SPT) presented in Aroma, a state-of-the-art code recommendation system, is a tree-structured representation used to infer code semantics by capturing program \emph{structure} rather than program \emph{syntax}. This is a dep
Externí odkaz:
http://arxiv.org/abs/2003.11118
Autor:
Georganas, Evangelos, Banerjee, Kunal, Kalamkar, Dhiraj, Avancha, Sasikanth, Venkat, Anand, Anderson, Michael, Henry, Greg, Pabst, Hans, Heinecke, Alexander
Deep learning (DL) is one of the most prominent branches of machine learning. Due to the immense computational cost of DL workloads, industry and academia have developed DL libraries with highly-specialized kernels for each workload/architecture, lea
Externí odkaz:
http://arxiv.org/abs/1906.06440
Autor:
Sotoudeh, Matthew, Venkat, Anand, Anderson, Michael, Georganas, Evangelos, Heinecke, Alexander, Knight, Jason
Domain specific accelerators present new challenges and opportunities for code generation onto novel instruction sets, communication fabrics, and memory architectures. In this paper we introduce an intermediate representation (IR) which enables both
Externí odkaz:
http://arxiv.org/abs/1810.09958
Autor:
Mohammadi, Mahdi Soltan, Cheshmi, Kazem, Gopalakrishnan, Ganesh, Hall, Mary, Dehnavi, Maryam Mehri, Venkat, Anand, Yuki, Tomofumi, Strout, Michelle Mills
Analyzing array-based computations to determine data dependences is useful for many applications including automatic parallelization, race detection, computation and communication overlap, verification, and shape analysis. For sparse matrix codes, ar
Externí odkaz:
http://arxiv.org/abs/1807.10852
Autor:
Soltan Mohammadi, Mahdi, Cheshmi, Kazem, Gopalakrishnan, Ganesh, Hall, Mary, Mehri Dehnavi, Maryam, Venkat, Anand, Yuki, Tomofumi, Mills Strout, Michelle
Publikováno v:
[Research Report] Arxiv. 2018
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::717c311d106856928f53dec8c71fe900
https://hal.inria.fr/hal-01942381
https://hal.inria.fr/hal-01942381
Autor:
Venkat, Anand
Sparse matrix codes are found in numerous applications ranging from iterative numerical solvers to graph analytics. Achieving high performance on these codes has however been a significant challenge, mainly due to array access indirection, for exampl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7d66d8968e529f6a430ecb1f85975d1d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Languages & Compilers for Parallel Computing: 29th International Workshop, LCPC 2016, Rochester, NY, USA, September 28-30, 2016, Revised Papers; 2017, p218-232, 15p
Publikováno v:
2016 IEEE International Parallel & Distributed Processing Symposium (IPDPS); 2016, p514-523, 10p