Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Velibor Bojković"'
Publikováno v:
Czechoslovak Mathematical Journal. 73:603-611
Autor:
Velibor Bojković
Publikováno v:
Mathematische Zeitschrift. 288:1165-1193
Given a finite morphism $$\varphi :Y\rightarrow X$$ of quasi-smooth Berkovich curves over a complete, non-archimedean, nontrivially valued algebraically closed field k of characteristic 0, we prove a Riemann–Hurwitz formula relating their Euler–P
We consider a finite \'etale morphism $f:Y \to X$ of quasi-smooth Berkovich curves over a complete nonarchimedean non-trivially valued field $k$, assumed algebraically closed and of characteristic 0, and a skeleton $\Gamma_f=(\Gamma_Y,\Gamma_X)$ of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e98a89e63365a067ffb4b53b9efaae0e
http://arxiv.org/abs/1901.07644
http://arxiv.org/abs/1901.07644
Autor:
Jérôme Poineau, Velibor Bojković
Publikováno v:
Mathematische Annalen
Mathematische Annalen, Springer Verlag, 2018, 372 (3-4), pp.1575-1595. ⟨10.1007/s00208-018-1668-x⟩
Mathematische Annalen, Springer Verlag, 2018, 372 (3-4), pp.1575-1595. ⟨10.1007/s00208-018-1668-x⟩
Let $k$ be a complete, nontrivially valued non-archimedean field. Given a finite morphism of quasi-smooth $k$-analytic curves that admit finite triangulations, we provide upper bounds for the number of connected components of the ramification locus i