Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Veldman, H.J."'
Publikováno v:
In Discrete Applied Mathematics 2000 99(1):317-321
Publikováno v:
In Discrete Applied Mathematics 2000 99(1):323-329
Publikováno v:
In Discrete Mathematics 2000 218(1):1-8
Publikováno v:
In Discrete Mathematics 1999 197:781-789
Publikováno v:
Journal of graph theory, 23(3), 257-263. Wiley-Liss Inc.
Autor:
Trommel, H., Veldman, H.J.
Let $k$, $d$ and $\lambda$ be positive integers. A cycle $C$ of $G$ is called a $D_{\lambda}$-cycle if every component of $G-V(C)$ has order less than $\lambda$. It is shown that if $G$ is a $k$-connected $d$-regular graph (\,$k\geq 2$\,) on $n\leq (
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::bda1e438fdc3a76f847bef3fd5ca0c7d
https://research.utwente.nl/en/publications/long-dcycles-in-regular-graphs(9ea97ff7-7b20-4b1b-a384-a8ac217349da).html
https://research.utwente.nl/en/publications/long-dcycles-in-regular-graphs(9ea97ff7-7b20-4b1b-a384-a8ac217349da).html
A graph G is chordal if it contains no chordless cycle of length at least four and is k-chordal if a longest chordless cycle in G has length at most k. In this note it is proved that all ..-tough 5-chordal graphs have a 2-factor. This result is best
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::b7412578fc189b0caeddd32740e8870b
https://research.utwente.nl/en/publications/4d5275e8-12fb-4d7e-bbae-a164a3f23c51
https://research.utwente.nl/en/publications/4d5275e8-12fb-4d7e-bbae-a164a3f23c51
It is proven that if $G$ is a 3-cyclable graph on $n$ vertices, with minimum degree $\delta$ and with a maximum independent set of cardinality $\alpha$, then $G$ contains a cycle of length at least min\,$\{n,3\delta-3,n+\delta-\alpha\}$.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::fe386c15e377b460b76359c82ce03605
https://research.utwente.nl/en/publications/long-cycles-in-3cyclable-graphs(ca01972d-33d2-46fc-a902-2d8c7dd83aed).html
https://research.utwente.nl/en/publications/long-cycles-in-3cyclable-graphs(ca01972d-33d2-46fc-a902-2d8c7dd83aed).html