Zobrazeno 1 - 10
of 93
pro vyhledávání: '"Veiga, Álvaro"'
Autor:
Moraes, Daniel de S., Santos, Pedro T. C., da Costa, Polyana B., Pinto, Matheus A. S., Pinto, Ivan de J. P., da Veiga, Álvaro M. G., Colcher, Sergio, Busson, Antonio J. G., Rocha, Rafael H., Gaio, Rennan, Miceli, Rafael, Tourinho, Gabriela, Rabaioli, Marcos, Santos, Leandro, Marques, Fellipe, Favaro, David
This work presents an unsupervised method for automatically constructing and expanding topic taxonomies using instruction-based fine-tuned LLMs (Large Language Models). We apply topic modeling and keyword extraction techniques to create initial topic
Externí odkaz:
http://arxiv.org/abs/2401.06790
Autor:
Busson, Antonio J. G., Rocha, Rafael, Gaio, Rennan, Miceli, Rafael, Pereira, Ivan, Moraes, Daniel de S., Colcher, Sérgio, Veiga, Alvaro, Rizzi, Bruno, Evangelista, Francisco, Santos, Leandro, Marques, Fellipe, Rabaioli, Marcos, Feldberg, Diego, Mattos, Debora, Pasqua, João, Dias, Diogo
This work proposes the Two-headed DragoNet, a Transformer-based model for hierarchical multi-label classification of financial transactions. Our model is based on a stack of Transformers encoder layers that generate contextual embeddings from two sho
Externí odkaz:
http://arxiv.org/abs/2312.07730
Autor:
Busson, Antonio J G, Mendes, Paulo R C, Moraes, Daniel de S, da Veiga, Álvaro M, Guedes, Álan L V, Colcher, Sérgio
Recent works have successfully applied some types of Convolutional Neural Networks (CNNs) to reduce the noticeable distortion resulting from the lossy JPEG/MPEG compression technique. Most of them are built upon the processing made on the spatial dom
Externí odkaz:
http://arxiv.org/abs/2010.05760
In contrast with many other convex optimization classes, state-of-the-art semidefinite programming solvers are yet unable to efficiently solve large scale instances. This work aims to reduce this scalability gap by proposing a novel proximal algorith
Externí odkaz:
http://arxiv.org/abs/1810.05231
In this paper, we introduce a new machine learning (ML) model for nonlinear regression called the Boosted Smooth Transition Regression Trees (BooST), which is a combination of boosting algorithms with smooth transition regression trees. The main adva
Externí odkaz:
http://arxiv.org/abs/1808.03698
Publikováno v:
In Journal of Retailing December 2021 97(4):715-725
Publikováno v:
In Insurance Mathematics and Economics November 2017 77:177-188
Publikováno v:
In Electric Power Systems Research November 2017 152:9-17
Autor:
Medeiros, Marcelo C., Veiga, Alvaro
Publikováno v:
Journal of Computational and Graphical Statistics, 2002 Mar 01. 11(1), 236-258.
Externí odkaz:
https://www.jstor.org/stable/1391137
Publikováno v:
In European Journal of Operational Research 16 August 2014 237(1):303-311