Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Veeorg, Triinu"'
Autor:
Abrahamsen, Trond A., Aliaga, Ramón J., Lima, Vegard, Martiny, André, Perreau, Yoël, Prochazka, Antonín, Veeorg, Triinu
We introduce relative versions of Daugavet-points and the Daugavet property, where the Daugavet-behavior is localized inside of some supporting slice. These points present striking similarities with Daugavet-points, but lie strictly between the notio
Externí odkaz:
http://arxiv.org/abs/2306.05536
We introduce a new diametral notion for points of the unit sphere of Banach spaces, that naturally complements the notion of Delta-points, but is weaker than the notion of Daugavet points. We prove that this notion can be used to provide a new geomet
Externí odkaz:
http://arxiv.org/abs/2303.07037
Autor:
Abrahamsen, Trond A., Aliaga, Ramón J., Lima, Vegard, Martiny, André, Perreau, Yoël, Prochazka, Antonín, Veeorg, Triinu
Publikováno v:
J. London Math. Soc. 109 (2024), e12913
We show that the Lipschitz-free space with the Radon--Nikod\'{y}m property and a Daugavet point recently constructed by Veeorg is in fact a dual space isomorphic to $\ell_1$. Furthermore, we answer an open problem from the literature by showing that
Externí odkaz:
http://arxiv.org/abs/2303.00511
Autor:
Kaasik, Jaan Kristjan, Veeorg, Triinu
We construct a Lipschitz-free space that is locally almost square but not weakly almost square; this is the first example of such a Banach space. We also prove a result, which indicates that geodesic metric spaces are a potential metric characterizat
Externí odkaz:
http://arxiv.org/abs/2210.09158
Autor:
Veeorg, Triinu
A norm one element $x$ of a Banach space is a Daugavet-point (respectively,~a $\Delta$-point) if every slice of the unit ball (respectively,~every slice of the unit ball containing $x$) contains an element that is almost at distance 2 from $x$. We pr
Externí odkaz:
http://arxiv.org/abs/2206.03475
Autor:
Veeorg, Triinu
A norm one element $x$ of a Banach space is a Daugavet-point (respectively, a $\Delta$-point) if every slice of the unit ball (respectively, every slice of the unit ball containing $x$) contains an element, which is almost at distance 2 from $x$. We
Externí odkaz:
http://arxiv.org/abs/2111.14393
Publikováno v:
In Journal of Functional Analysis 15 June 2024 286(12)
A Daugavet-point (resp.~$\Delta$-point) of a Banach space is a norm one element $x$ for which every point in the unit ball (resp.~element $x$ itself) is in the closed convex hull of unit ball elements that are almost at distance 2 from $x$. A Banach
Externí odkaz:
http://arxiv.org/abs/2001.06197
Autor:
Kaasik, Jaan Kristjan, Veeorg, Triinu
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 October 2023 526(1)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.