Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Vasilescu, M. Alex O."'
Autor:
Vasilescu, M. Alex O.
Publikováno v:
Proceedings of the 26th International Conference on Pattern Recognition (ICPR 2022) Montreal, Canada, Aug. 21-25, 2022
We derive a set of causal deep neural networks whose architectures are a consequence of tensor (multilinear) factor analysis. Forward causal questions are addressed with a neural network architecture composed of causal capsules and a tensor transform
Externí odkaz:
http://arxiv.org/abs/2301.00314
Generative neural network architectures such as GANs, may be used to generate synthetic instances to compensate for the lack of real data. However, they may be employed to create media that may cause social, political or economical upheaval. One emer
Externí odkaz:
http://arxiv.org/abs/2108.06702
Publikováno v:
2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, pp. 10736-10743
By adhering to the dictum, "No causation without manipulation (treatment, intervention)", cause and effect data analysis represents changes in observed data in terms of changes in the causal factors. When causal factors are not amenable for active ma
Externí odkaz:
http://arxiv.org/abs/2102.12853
Autor:
Vasilescu, M. Alex O., Kim, Eric
Publikováno v:
25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'19): Tensor Methods for Emerging Data Science Challenges Workshop, August 04-08, 2019, Anchorage, AK.ACM, New York, NY
Visual objects are composed of a recursive hierarchy of perceptual wholes and parts, whose properties, such as shape, reflectance, and color, constitute a hierarchy of intrinsic causal factors of object appearance. However, object appearance is the c
Externí odkaz:
http://arxiv.org/abs/1911.04180
Autor:
Vasilescu, M. Alex O.
This thesis introduces a multilinear algebraic framework for computer graphics, computer vision, and machine learning, particularly for the fundamental purposes of image synthesis, analysis, and recognition. Natural images result from the multifactor
Externí odkaz:
http://hdl.handle.net/1807/65327
Autor:
Hutchison, David, Kanade, Takeo, Kittler, Josef, Kleinberg, Jon M., Mattern, Friedemann, Mitchell, John C., Naor, Moni, Nierstrasz, Oscar, Pandu Rangan, C., Steffen, Bernhard, Sudan, Madhu, Tygar, Doug, Vardi, Moshe Y., Weikum, Gerhard, Davies, Mike E., James, Christopher J., Abdallah, Samer A., Plumbley, Mark D, Vasilescu, M. Alex O., Terzopoulos, Demetri
Publikováno v:
Independent Component Analysis & Signal Separation; 2007, p818-826, 9p
Publikováno v:
ACM SIGGRAPH 2004 Papers; 8/8/2004, p336-342, 7p
Publikováno v:
Computer Vision - ECCV 2002 (9783540437451); 2002, p447-460, 14p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ACM Transactions on Graphics; Aug2004, Vol. 23 Issue 3, p336-342, 7p, 6 Color Photographs, 8 Diagrams