Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Varvara, Kalokyri"'
Autor:
Vassilis Kilintzis, Varvara Kalokyri, Haridimos Kondylakis, Smriti Joshi, Katerina Nikiforaki, Oliver Díaz, Karim Lekadir, Manolis Tsiknakis, Kostas Marias
Publikováno v:
European Radiology Experimental, Vol 8, Iss 1, Pp 1-12 (2024)
Abstract Background Developing trustworthy artificial intelligence (AI) models for clinical applications requires access to clinical and imaging data cohorts. Reusing of publicly available datasets has the potential to fill this gap. Specifically in
Externí odkaz:
https://doaj.org/article/39fe1ae5fca14d0083fddafc7d264d39
Autor:
Haridimos Kondylakis, Varvara Kalokyri, Stelios Sfakianakis, Kostas Marias, Manolis Tsiknakis, Ana Jimenez-Pastor, Eduardo Camacho-Ramos, Ignacio Blanquer, J. Damian Segrelles, Sergio López-Huguet, Caroline Barelle, Magdalena Kogut-Czarkowska, Gianna Tsakou, Nikolaos Siopis, Zisis Sakellariou, Paschalis Bizopoulos, Vicky Drossou, Antonios Lalas, Konstantinos Votis, Pedro Mallol, Luis Marti-Bonmati, Leonor Cerdá Alberich, Karine Seymour, Samuel Boucher, Esther Ciarrocchi, Lauren Fromont, Jordi Rambla, Alexander Harms, Andrea Gutierrez, Martijn P. A. Starmans, Fred Prior, Josep Ll. Gelpi, Karim Lekadir
Publikováno v:
European Radiology Experimental, Vol 7, Iss 1, Pp 1-13 (2023)
Abstract Artificial intelligence (AI) is transforming the field of medical imaging and has the potential to bring medicine from the era of ‘sick-care’ to the era of healthcare and prevention. The development of AI requires access to large, comple
Externí odkaz:
https://doaj.org/article/a9710911be714bd29067ed9733586a3c
Autor:
Haridimos Kondylakis, Esther Ciarrocchi, Leonor Cerda-Alberich, Ioanna Chouvarda, Lauren A. Fromont, Jose Manuel Garcia-Aznar, Varvara Kalokyri, Alexandra Kosvyra, Dawn Walker, Guang Yang, Emanuele Neri, the AI4HealthImaging Working Group on metadata models
Publikováno v:
European Radiology Experimental, Vol 6, Iss 1, Pp 1-15 (2022)
Abstract A huge amount of imaging data is becoming available worldwide and an incredible range of possible improvements can be provided by artificial intelligence algorithms in clinical care for diagnosis and decision support. In this context, it has
Externí odkaz:
https://doaj.org/article/9260b95785014647b1b1eb29e757bf4c
Publikováno v:
Proceedings of the 2023 Conference on Human Information Interaction and Retrieval.
Autor:
Francesco Cremonesi, Vincent Planat, Varvara Kalokyri, Haridimos Kondylakis, Tiziana Sanavia, Victor Miguel Mateos Resinas, Babita Singh, Silvia Uribe
Publikováno v:
Journal of Biomedical Informatics. 141:104338
Autor:
Haridimos, Kondylakis, Stelios, Sfakianakis, Varvara, Kalokyri, Nikolaos, Tachos, Dimitrios, Fotiadis, Kostas, Marias, Manolis, Tsiknakis
Publikováno v:
Studies in health technology and informatics. 294
Prostate cancer (PCa) is one of the most prevalent cancers in the male population. Current clinical practices lead to overdiagnosis and overtreatment necessitating more effective tools for improving diagnosis, thus the quality of life of patients. Re
Autor:
Haridimos, Kondylakis, Esther, Ciarrocchi, Leonor, Cerda-Alberich, Ioanna, Chouvarda, Lauren A, Fromont, Jose Manuel, Garcia-Aznar, Varvara, Kalokyri, Alexandra, Kosvyra, Dawn, Walker, Guang, Yang, Emanuele, Neri
Publikováno v:
European radiology experimental. 6(1)
A huge amount of imaging data is becoming available worldwide and an incredible range of possible improvements can be provided by artificial intelligence algorithms in clinical care for diagnosis and decision support. In this context, it has become e
Publikováno v:
Proceedings of the Association for Information Science and Technology. 56:276-285
Digital traces of our lives are now constantly produced by various connected devices, internet services and interactions. Our actions result in a multitude of heterogeneous data objects, or traces, kept in various locations in the cloud or on local d
Publikováno v:
CIKM
Personal information is typically fragmented across multiple, heterogeneous, distributed sources and saved as small, heterogeneous data objects, or traces. The DigitalSelf project at Rutgers University focuses on developing tools and techniques to ma
Publikováno v:
ExploreDB@SIGMOD/PODS
A large number of personal digital traces is constantly generated or available online from a variety of sources, such as social media, calendars, purchase history, etc. These personal data traces are fragmented and highly heterogeneous, raising the n