Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Varuzhan Sergeevich Atabekyan"'
Autor:
Varuzhan Sergeevich Atabekyan, Yurii S Osipov, Igor Geront'evich Lysenok, Alexey Talambutsa, Lev D. Beklemishev, Sergey Goncharov, Dmitrii Valer'evich Treschev, Lev Naumovich Shevrin, Алексей Львович Семeнов, Mati Pentus, Victor Antonovich Sadovnichii, Victor Matveevich Buchstaber, Valery V. Kozlov, Sergei Petrovich Novikov, Alexander A. Razborov, Yurii Leonidovich Ershov, Игорь Геронтьевич Лысeнок, Vladimir V. Podolskii, Aleksei L'vovich Semenov, Victor Guba
Publikováno v:
Uspekhi Matematicheskikh Nauk. 76:191-194
Autor:
Varuzhan Sergeevich Atabekyan, Lev Dmitrievich Beklemishev, Victor Sergeevich Guba, Игорь Геронтьевич Лысeнок, Igor Geront'evich Lysenok, Alexander Alexandrovich Razborov, Алексей Львович Семeнов, Aleksei Lvovich Semenov
Publikováno v:
Uspekhi Matematicheskikh Nauk. 76:3-30
Дан обзор результатов по проблеме Бернсайда и свойствам бернсайдовых групп, проблеме конечного базиса групповых тождеств, периодическ
Publikováno v:
Mathematical Notes. 108:149-154
In the paper, automorphisms are studied for free groups of varieties given by a family of identities in the well-known infinite independent system of identities involving two variables that was constructed by S. I. Adian to solve the finite basis pro
Publikováno v:
Matematicheskie Zametki. 108:163-170
В работе исследуются автоморфизмы свободных групп многообразий, задаваемых набором тождеств из известной бесконечной независимой сис
Publikováno v:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences). 54:319-327
A group is called an n-torsion group if it has a system of defining relations of the form rn = 1 for some elements r, and for any of its finite order element a the defining relation an = 1 holds. It is assumed that the group can contain elements of i
Publikováno v:
Математический сборник. 209:3-16
Publikováno v:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences). 52:111-117
In this paper we provide an overview of the results relating to the n-periodic products of groups that have been obtained in recent years by the authors of the present paper, as well as some results obtained by other authors in this direction. The pe
Publikováno v:
Известия Российской академии наук. Серия математическая. 81:3-14
Publikováno v:
Matematicheskie Zametki. 99:643-648
Publikováno v:
Izvestiya: Mathematics. 79:1097-1110
We prove that n-periodic products (introduced by the first author in 1976) are uniquely characterized by certain quite specific properties. Using these properties, we prove that if a non-cyclic subgroup H of the n-periodic product of a given family o