Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Vartanian, P. H."'
Autor:
Shanblatt, Elisabeth R., Porter, Christina L., Gardner, Dennis F., Mancini, Giulia F., Karl Jr., Robert M., Tanksalvala, Michael D., Bevis, Charles S., Vartanian, Victor H., Kapteyn, Henry C., Adams, Daniel E., Murnane, Margaret M.
Characterizing buried layers and interfaces is critical for a host of applications in nanoscience and nano-manufacturing. Here we demonstrate non-invasive, non-destructive imaging of buried interfaces using a tabletop, extreme ultraviolet (EUV), cohe
Externí odkaz:
http://arxiv.org/abs/1603.01301
Orthogonalisation of the (ordered) base $\lbrace 1,z^{-1},z,z^{-2},z^{2}, >...c,z^{-k},z^{k},...c \rbrace$ with respect to the real inner product $(f,g) \mapsto \int_{\mathbb{R}}f(s)g(s) \exp (-\mathscr{N} V(s)) \md s$, $\mathscr{N} \in \mathbb{N}$,
Externí odkaz:
http://arxiv.org/abs/math/0602202
Let $\Lambda^{\mathbb{R}}$ denote the linear space over $\mathbb{R}$ spanned by $z^{k}$, $k \in \mathbb{Z}$. Define the real inner product (with varying exponential weights) $<\boldsymbol{\cdot},\boldsymbol{\cdot} >_{\mathscr{L}} \colon \Lambda^{\mat
Externí odkaz:
http://arxiv.org/abs/math/0601595
Let $\Lambda^{\mathbb{R}}$ denote the linear space over $\mathbb{R}$ spanned by $z^{k}$, $k \! \in \! \mathbb{Z}$. Define the real inner product (with varying exponential weights) $\langle \boldsymbol{\cdot},\boldsymbol{\cdot} \rangle_{\mathscr{L}} \
Externí odkaz:
http://arxiv.org/abs/math/0601306
Autor:
Kitaev, A. V., Vartanian, A. H.
The degenerate third Painlev\'{e} equation, $u^{\prime \prime} = \frac{(u^{\prime})^{2}}{u} - \frac{u^{\prime}}{\tau} + \frac{1}{\tau}(-8 \epsilon u^{2} + 2ab) + \frac{b^{2}}{u}$, where $\epsilon,b \in \mathbb{R}$, and $a \in \mathbb{C}$, and the ass
Externí odkaz:
http://arxiv.org/abs/math/0312075
Autor:
Vartanian, A. H.
For Lax-pair isospectral deformations whose associated spectrum, for given initial data, consists of the disjoint union of a finitely denumerable discrete spectrum (solitons) and a continuous spectrum (continuum), the matrix Riemann-Hilbert problem a
Externí odkaz:
http://arxiv.org/abs/nlin/0210050
Autor:
Vartanian, A. H.
The methodology of the Riemann-Hilbert (RH) factorisation approach for Lax-pair isospectral deformations is used to derive, in the solitonless sector, the leading-order asymptotics as $t \to \pm \infty$ $(x/t \sim \mathcal{O}(1))$ of solutions to the
Externí odkaz:
http://arxiv.org/abs/nlin/0110024
Autor:
Vartanian, A. H.
Using the matrix Riemann-Hilbert factorisation approach for non-linear evolution systems which take the form of Lax-pair isospectral deformations, the higher order asymptotics as $t \to \pm \infty$ $(x/t \sim {\cal O}(1))$ of the solution to the Cauc
Externí odkaz:
http://arxiv.org/abs/solv-int/9804013
Autor:
Kitaev, A. V., Vartanian, A. H.
Using the matrix Riemann-Hilbert factorization approach for nonlinear evolution systems which take the form of Lax-pair isospectral deformations and whose corresponding Lax operators contain both discrete and continuous spectra, the leading-order asy
Externí odkaz:
http://arxiv.org/abs/solv-int/9801001
Autor:
Kitaev, A. V., Vartanian, A. H.
Using the matrix Riemann-Hilbert factorisation approach for non-linear evolution equations (NLEEs) integrable in the sense of the inverse scattering method, we obtain, in the solitonless sector, the leading-order asymptotics as $t$ tends to plus and
Externí odkaz:
http://arxiv.org/abs/solv-int/9701001