Zobrazeno 1 - 10
of 265
pro vyhledávání: '"Varona J"'
Autor:
Castro Mora, M.P., Palacio Varona, J., Perez Riaño, B., Laverde Cubides, C., Rey-Rodriguez, D.V.
Publikováno v:
In Archivos de la Sociedad Española de Oftalmología (English Ed) April 2023 98(4):220-232
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Adv. Math. 330 (2018), 688-738
The analysis of nonlocal discrete equations driven by fractional powers of the discrete Laplacian on a mesh of size $h>0$ \[ (-\Delta_h)^su=f, \] for $u,f:\mathbb{Z}_h\to\mathbb{R}$, $0
Externí odkaz:
http://arxiv.org/abs/1608.08913
We define and study some properties of the fractional powers of the discrete Laplacian $$(-\Delta_h)^s,\quad\hbox{on}~\mathbb{Z}_h = h\mathbb{Z},$$ for $h>0$ and $0
Externí odkaz:
http://arxiv.org/abs/1507.04986
Publikováno v:
J. Anal. Math. 132 (2017), 109-131
It is well-known that the fundamental solution of $$ u_t(n,t)= u(n+1,t)-2u(n,t)+u(n-1,t), \quad n\in\mathbb{Z}, $$ with $u(n,0) =\delta_{nm}$ for every fixed $m \in\mathbb{Z}$, is given by $u(n,t) = e^{-2t}I_{n-m}(2t)$, where $I_k(t)$ is the Bessel f
Externí odkaz:
http://arxiv.org/abs/1401.2091
Publikováno v:
A simple computation of $\zeta(2k)$, Amer. Math. Monthly 122 (2015), 444-451
We present a new proof of Euler's formulas for $\zeta(2k)$, where $k = 1,2,3,...$, which uses only the defining properties of the Bernoulli polynomials, obtaining the value of $\zeta(2k)$ by summing a telescoping series. Only basic techniques from Ca
Externí odkaz:
http://arxiv.org/abs/1209.5030
Publikováno v:
J. Math. Math. Anal. Appl. 372 (2010), 470-485
In the context of the Dunkl transform a complete orthogonal system arises in a very natural way. This paper studies the weighted norm convergence of the Fourier series expansion associated to this system. We establish conditions on the weights, in te
Externí odkaz:
http://arxiv.org/abs/1010.1848
Publikováno v:
Expo. Math. 30 (2012), 32-48
We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and Fourier-Neumann type series a
Externí odkaz:
http://arxiv.org/abs/0909.0067
Publikováno v:
Semigroup Forum 73 (2006), 129-142
Given $\alpha > -1$, consider the second order differential operator in $(0,\infty)$, $$L_\alpha f \equiv (x^2 \frac{d^2}{dx^2} + (2\alpha+3)x \frac{d}{dx} + x^2 + (\alpha+1)^2)(f), $$ which appears in the theory of Bessel functions. The purpose of t
Externí odkaz:
http://arxiv.org/abs/math/0511096
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.