Zobrazeno 1 - 10
of 975
pro vyhledávání: '"Variable exponents"'
Autor:
Allalou Mouad, Raji Abderrahmane
Publikováno v:
Nonautonomous Dynamical Systems, Vol 11, Iss 1, Pp 213-259 (2024)
The present article deals with the existence of weak solutions to a class of p(z)p\left(z)-Kirchhoff-type problems. To address these problems, we employ a variational approach in conjunction with the theory of variable exponent Sobolev spaces, while
Externí odkaz:
https://doaj.org/article/905c9ef7de62429b964f14a60b29a590
Autor:
Luiz F. O. Faria, Marcelo Montenegro
Publikováno v:
Electronic Journal of Differential Equations, Vol 2024, Iss 41,, Pp 1-24 (2024)
Externí odkaz:
https://doaj.org/article/6e10ca46039e486e82c1eec446a11e9c
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-20 (2024)
Abstract In this paper, we analyze the existence of solutions to a double-phase fractional equation of the Kirchhoff type in Musielak-Orlicz Sobolev space with variable exponents. Our approach is mainly based on the sub-supersolution method and the m
Externí odkaz:
https://doaj.org/article/27e0f282b51f4a53ab6518d302572870
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 3, Pp 734-747 (2024)
This paper is devoted to the study of a double phase problem with variable exponents and Dirichlet boundary condition. Based on an abstract critical point theorem, we establish existence results under very general assumptions on the nonlinear term, s
Externí odkaz:
https://doaj.org/article/bc7809a21dfd47e882ffd9befac00131
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-30 (2024)
Abstract In this work, we consider a quasilinear system of viscoelastic equations with dispersion, source, and variable exponents. Under suitable assumptions on the initial data and the relaxation functions, we obtained that the solution of the syste
Externí odkaz:
https://doaj.org/article/867049d7b348444396633f4276483be0
Publikováno v:
AIMS Mathematics, Vol 9, Iss 5, Pp 12825-12851 (2024)
We considered a swelling porous-elastic system characterized by two nonlinear variable exponent damping and logarithmic source terms. Employing the Faedo-Galerkin method, we established the local existence of weak solutions under suitable assumptions
Externí odkaz:
https://doaj.org/article/ee8face5eedb499a91a02f04ea63d8d8
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-17 (2024)
Abstract This work deals with the existence and multiplicity of solutions for a class of variable-exponent equations involving the Kirchhoff term in variable-exponent Sobolev spaces according to some conditions, where we used the sub-supersolutions m
Externí odkaz:
https://doaj.org/article/3e7288a8974b4602a3e0721a0867ce96
Autor:
Mohammad Kafini
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 11, Iss , Pp 100879- (2024)
In this work, we are concerned with a nonlinear wave equation with variable exponents. In the presence of the logarithmic nonlinear source, we established a global nonexistence result with negative initial data and without imposing the Sobolev Logari
Externí odkaz:
https://doaj.org/article/4debc839651841dc8b53eff83bbf7740
Publikováno v:
AIMS Mathematics, Vol 9, Iss 1, Pp 1664-1682 (2024)
In this paper, we studied a double-phase eigenvalue problem with large variable exponents. Let $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $ be the first eigenvalues and $ u_{n} $ be the first eigenfunctions, normalized by $ \|u_{n}\|_{\mathcal{H
Externí odkaz:
https://doaj.org/article/b179f6714c0549608dc964cdcf1491b8
Autor:
Adel M. Al-Mahdi
Publikováno v:
AIMS Mathematics, Vol 8, Iss 12, Pp 29577-29603 (2023)
In this work, we consider a nonlinear thermoelastic Timoshenko system with a time-dependent coefficient where the heat conduction is given by Coleman-Gurtin [1]. Consequently, the Fourier and Gurtin-Pipkin laws are special cases. We prove that the sy
Externí odkaz:
https://doaj.org/article/2007cc6f817f478ab6bfa4f960d4b7ef