Zobrazeno 1 - 10
of 1 311
pro vyhledávání: '"Vargas, Jorge A."'
Autor:
Ørsted, Bent, Vargas, Jorge A.
For a semisimple Lie group $G$ satisfying the equal rank condition, the most basic family of unitary irreducible representations is the Discrete Series found by Harish-Chandra. In this paper, we continue our study of the branching laws for Discrete S
Externí odkaz:
http://arxiv.org/abs/2412.08351
The first paper in this series introduced a new approach to strong convergence of random matrices that is based primarily on soft arguments. This method was applied to achieve a refined qualitative and quantitative understanding of strong convergence
Externí odkaz:
http://arxiv.org/abs/2412.00593
A family of random matrices $\boldsymbol{X}^N=(X_1^N,\ldots,X_d^N)$ converges strongly to a family $\boldsymbol{x}=(x_1,\ldots,x_d)$ in a $C^*$-algebra if $\|P(\boldsymbol{X}^N)\|\to\|P(\boldsymbol{x})\|$ for every noncommutative polynomial $P$. This
Externí odkaz:
http://arxiv.org/abs/2405.16026
We introduce a function of the density of states for periodic Jacobi matrices on trees and prove a useful formula for it. This allows new, streamlined proofs of the gap labeling and Aomoto index theorems. We prove a version of this new formula for th
Externí odkaz:
http://arxiv.org/abs/2309.00437
Autor:
Ørsted, Bent, Vargas, Jorge A.
For a semisimple Lie group $G$, we study Discrete Series representations with admissible branching to a symmetric subgroup $H$. This is done using a canonical associated symmetric subgroup $H_0$, forming a pseudo-dual pair with $H$, and a correspondi
Externí odkaz:
http://arxiv.org/abs/2302.14190
We develop a framework for proving rapid convergence of shifted QR algorithms which use Ritz values as shifts, in finite arithmetic. Our key contribution is a dichotomy result which addresses the known forward-instability issues surrounding the shift
Externí odkaz:
http://arxiv.org/abs/2205.06810
We give a self-contained randomized algorithm based on shifted inverse iteration which provably computes the eigenvalues of an arbitrary matrix $M\in\mathbb{C}^{n\times n}$ up to backward error $\delta\|M\|$ in $O(n^4+n^3\log^2(n/\delta)+\log(n/\delt
Externí odkaz:
http://arxiv.org/abs/2205.06804
Autor:
Cassiani-Miranda, Carlos A., Arango-Dávila, César A., González-Giraldo, Jeffrey, Parra-Vera, Mario D., Tellez-Vargas, Jorge, Morales-Puerto, Lilian Rocío
Publikováno v:
In Revista Colombiana de Psiquiatría October-November 2024 53(4):584-597
Autor:
Rojas-Vargas, Jorge1 (AUTHOR), Rebollar, Eria A.2 (AUTHOR), Sanchez-Flores, Alejandro3 (AUTHOR), Pardo-López, Liliana1 (AUTHOR) liliana.pardo@ibt.unam.mx
Publikováno v:
PLoS ONE. 8/8/2024, Vol. 19 Issue 8, p1-20. 20p.