Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Vanessa Lleras"'
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis
ESAIM: Mathematical Modelling and Numerical Analysis, 2023, 57, pp.1111-1142. ⟨10.1051/m2an/2023010⟩
ESAIM: Mathematical Modelling and Numerical Analysis, 2023, 57, pp.1111-1142. ⟨10.1051/m2an/2023010⟩
We present an immersed boundary method to simulate the creeping motion of a rigid particle in a fluid described by the Stokes equations discretized thanks to a finite element strategy on unfitted meshes, called ϕ-FEM, that uses the description of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14f70f33cd3a578686d761a97ea94a4a
https://hal.science/hal-03588715v4/file/main.pdf
https://hal.science/hal-03588715v4/file/main.pdf
Publikováno v:
Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics, 2022, 416, pp.114557. ⟨10.1016/j.cam.2022.114557⟩
Journal of Computational and Applied Mathematics, 2022, 416, pp.114557. ⟨10.1016/j.cam.2022.114557⟩
International audience; We study the Nitsche-based finite element method for contact with Coulomb friction considering both static and dynamic situations. We provide existence and/or uniqueness results for the discretized problems under appropriate a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::945e6ebe1632303bedb7a5887b91d234
https://hal.science/hal-03927542
https://hal.science/hal-03927542
Publikováno v:
10th International Conference on Adaptative Modeling and Simulation.
empty
Publikováno v:
Numerical Methods for Partial Differential Equations
Numerical Methods for Partial Differential Equations, Wiley, In press
Numerical Methods for Partial Differential Equations, In press, 39 (1), pp.281-303. ⟨10.1002/num.22878⟩
Numerical Methods for Partial Differential Equations, Wiley, In press
Numerical Methods for Partial Differential Equations, In press, 39 (1), pp.281-303. ⟨10.1002/num.22878⟩
International audience; We present a new finite element method, called $φ$-FEM, to solve numerically elliptic partial differential equations with natural (Neumann or Robin) boundary conditions using simple computational grids, not fitted to the boun
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b36dd0f7eb68f3623a917f09644b7a9f
http://arxiv.org/abs/2003.11733
http://arxiv.org/abs/2003.11733
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2019, ⟨10.1051/m2an/2019023⟩
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press, ⟨10.1051/m2an/2019023⟩
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2019, ⟨10.1051/m2an/2019023⟩
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press, ⟨10.1051/m2an/2019023⟩
We consider the finite element method on locally damaged meshes allowing for some distorted cells which are isolated from one another. In the case of the Poisson equation and piecewise linear Lagrange finite elements, we show that the usual a priori
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::47db498944f51f922ce7f273ea00e217
Autor:
Huu Phuoc Bui, Marek Bucki, Stéphane Bordas, Satyendra Tomar, Michel Duprez, Vanessa Lleras, Franz Chouly, Pierre-Yves Rohan, Claudio Lobos, Alexei Lozinski
Publikováno v:
Applied Mathematical Modelling
Applied Mathematical Modelling, Elsevier, 2020, 77 (1), pp.709-723. ⟨10.1016/j.apm.2019.07.055⟩
Applied Mathematical Modelling, 2020, 77 (1), pp.709-723. ⟨10.1016/j.apm.2019.07.055⟩
Applied Mathematical Modelling, Elsevier, 2020, 77 (1), pp.709-723. ⟨10.1016/j.apm.2019.07.055⟩
Applied Mathematical Modelling, 2020, 77 (1), pp.709-723. ⟨10.1016/j.apm.2019.07.055⟩
Errors in biomechanics simulations arise from modeling and discretization. Modeling errors are due to the choice of the mathematical model whilst discretization errors measure the impact of the choice of the numerical method on the accuracy of the ap
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38fa766166f2fd85db1aeb63f47bbe7b
Publikováno v:
Lecture Notes in Computational Science and Engineering
European Conference on Numerical Mathematics and Advanced Applications ENUMATH 2017
European Conference on Numerical Mathematics and Advanced Applications ENUMATH 2017, University of Bergen, Sep 2017, Voss, Norway. pp.839-847, ⟨10.1007/978-3-319-96415-7_79⟩
Lecture Notes in Computational Science and Engineering ISBN: 9783319964140
European Conference on Numerical Mathematics and Advanced Applications ENUMATH 2017
European Conference on Numerical Mathematics and Advanced Applications ENUMATH 2017, University of Bergen, Sep 2017, Voss, Norway. pp.839-847, ⟨10.1007/978-3-319-96415-7_79⟩
Lecture Notes in Computational Science and Engineering ISBN: 9783319964140
International audience; The aim of this paper is to provide some mathematical results for the discrete problem associated to contact with Coulomb friction, in linear elasticity, when finite elements and Nitsche method are considered. We consider both
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::70fc89ba4b00bdde74994a81f0c075f4
https://hal.science/hal-01654487/file/authorv3.pdf
https://hal.science/hal-01654487/file/authorv3.pdf
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2012, pp.813-839. ⟨10.1051/m2an/2011072⟩
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2012, pp.813-839. ⟨10.1051/m2an/2011072⟩
The purpose of this paper is to provide ap riorierror estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimen- sional elastic bodies. This method allows to perform finite-elemen
Autor:
Mihai Bostan, Vanessa Lleras
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 73:1820-1833
The subject matter of this paper is the asymptotic behaviour of quasi-static variational inequalities, as regards physical parameters like the friction coefficient, compliance coefficient, etc. By convex duality, the quasi-static problems can be reca
Autor:
Vanessa Lleras, Patrick Hild
Publikováno v:
SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2009, 47 (5), pp.3550-3583. ⟨10.1137/070711554⟩
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2009, 47 (5), pp.3550-3583. ⟨10.1137/070711554⟩
International audience; This paper is concerned with residual error estimators for finite element approximations of Coulomb frictional contact problems. A recent uniqueness result by Renard in [SIAM J. Math. Anal., 38 (2006), pp. 452–467] for the c