Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Vanda Fülöp"'
Autor:
Bhikha Lila Ghodadra, Vanda Fülöp
Publikováno v:
Mathematica Bohemica, Vol 145, Iss 3, Pp 265-280 (2020)
For a Lebesgue integrable complex-valued function $f$ defined on $\mathbb R^+:=[0,\infty)$ let $\hat f$ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that $\hat f(y)\to0$ as $y\to\infty$. But in general, there is no definite rate at
Externí odkaz:
https://doaj.org/article/268d5ca4ae4a4e5da4a2ccd819730060
Autor:
Bhikha Lila Ghodadra, Vanda Fülöp
Publikováno v:
Kragujevac Journal of Mathematics. 44:563-570
In this study the definition of bounded variation of order p (p ∈ ℕ) for double sequences is considered. Some inclusion relations are proved and counter examples are provided for ensuring proper inclusions.
Autor:
Vanda Fülöp, Bhikha Lila Ghodadra
Publikováno v:
Mathematica Slovaca. 70:681-688
In this note, we obtain a Tauberian theorem for a class of regular lower triangular matrices operating on cosine series with coefficients tending to zero. As corollaries we obtain Tauberian theorems for weighted mean, Nörlund, and Hausdorff matrices
Autor:
Vanda Fülöp, Bhikha Lila Ghodadra
Publikováno v:
Mathematica Bohemica, Vol 145, Iss 3, Pp 265-280 (2020)
For a Lebesgue integrable complex-valued function $f$ defined on $\mathbb R^+:=[0,\infty )$ let $\hat f$ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that $\hat f(y)\to 0$ as $y\to \infty $. But in general, there is no definite rat
Autor:
Ferenc Móricz, Vanda Fülöp
Publikováno v:
Acta Scientiarum Mathematicarum. 83:433-439
Autor:
Bhikha Lila Ghodadra, Vanda Fülöp
Publikováno v:
Studia Scientiarum Mathematicarum Hungarica. 53:289-313
We investigate the pointwise and uniform convergence of the symmetric rectangular partial (also called Dirichlet) integrals of the double Fourier integral of a function that is Lebesgue integrable and of bounded variation over ℝ2. Our theorem is a
Autor:
Vanda Fülöp, Bhikha Lila Ghodadra
Publikováno v:
Mathematical Inequalities & Applications. :845-858
Autor:
Ferenc Móricaz, Vanda Fülöp
Publikováno v:
Analysis in Theory and Applications. 27:351-364
We consider complex-valued functions f ∈ L1(R+2), where R+:= [0,∞), and prove sufficient conditions under which the double sine Fourier transform \(\hat f_{ss} \) and the double cosine Fourier transform \(\hat f_{cc} \) belong to one of the two-d
Autor:
Vanda Fülöp
Publikováno v:
Analysis Mathematica. 35:199-212
We study the continuity and smoothness properties of functions f ∈ L1([0, ∞)) whose sine transforms \( \hat f_s \) and cosine tranforms \( \hat f_c \) belong to L1([0,∞)). We give best possible sufficient conditions in terms of \( \hat f_s \) a
Autor:
Vanda Fülöp
Publikováno v:
Colloquium Mathematicum. 105:25-34