Zobrazeno 1 - 10
of 135
pro vyhledávání: '"Van Vleck, Erik S"'
Publikováno v:
In Journal of Computational Physics 1 October 2024 514
Adaptive moving spatial meshes are useful for solving physical models given by time-dependent partial differentialequations. However, special consideration must be given when combining adaptive meshing procedures with ensemble-based data assimilation
Externí odkaz:
http://arxiv.org/abs/2109.05990
Autor:
Albarakati, Aishah, Budišić, Marko, Crocker, Rose, Glass-Klaiber, Juniper, Iams, Sarah, Maclean, John, Marshall, Noah, Roberts, Colin, Van Vleck, Erik S.
The understanding of nonlinear, high dimensional flows, e.g, atmospheric and ocean flows, is critical to address the impacts of global climate change. Data Assimilation techniques combine physical models and observational data, often in a Bayesian fr
Externí odkaz:
http://arxiv.org/abs/2101.09252
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Van Vleck, Erik S., Zhang, Aijun
This paper is devoted to the study of spatial propagation dynamics of species in locally spatially inhomogeneous patchy environments or media. For a lattice differential equation with monostable nonlinearity in a discrete homogeneous media, it is wel
Externí odkaz:
http://arxiv.org/abs/1910.03174
Autor:
Maclean, John, Van Vleck, Erik S
We introduce a framework for Data Assimilation (DA) in which the data is split into multiple sets corresponding to low-rank projections of the state space. Algorithms are developed that assimilate some or all of the projected data, including an algor
Externí odkaz:
http://arxiv.org/abs/1902.04212
Publikováno v:
In Journal of Computational Physics 1 October 2022 466
Autor:
Albarakati, Aishah, Budišić, Marko, Crocker, Rose, Glass-Klaiber, Juniper, Iams, Sarah, Maclean, John, Marshall, Noah, Roberts, Colin, Van Vleck, Erik S.
Publikováno v:
In Computers and Mathematics with Applications 15 June 2022 116:194-211
Autor:
Steyer, Andrew J., Van Vleck, Erik S.
We generalize the theory of underlying one-step methods to strictly stable general linear methods (GLMs) solving nonautonomous ordinary differential equations (ODEs) that satisfy a global Lipschitz condition. We combine this theory with the Lyapunov
Externí odkaz:
http://arxiv.org/abs/1709.02059
Publikováno v:
Ecology, 2020 Dec 01. 101(12), 1-12.
Externí odkaz:
https://www.jstor.org/stable/26998042