Zobrazeno 1 - 10
of 106
pro vyhledávání: '"Van Oystaeyen, Fred"'
Glider representations can be defined for a finite algebra filtration FKG determined by a chain of subgroups 1 < G_1 < ... < G_d = G. In this paper we develop the generalized character theory for such glider representations. We give the generalizatio
Externí odkaz:
http://arxiv.org/abs/1801.10368
Publikováno v:
Algebras and Representation Theory, Volume 16, No. 4, August 2017
We continue the study of glider representations of finite groups $G$ with given structure chain of subgroups $e \subset G_1 \subset \ldots \subset G_d = G$. We give a characterization of irreducible gliders of essential length $e \leq d$ which in the
Externí odkaz:
http://arxiv.org/abs/1612.02639
Publikováno v:
Algebras and Representation Theory, Volume 19, No. 3, June 2016
Classical Clifford theory studies the decomposition of simple $G$-modules into simple $H$-modules for some normal subgroup $H \triangleleft G$. In this paper we deal with chains of normal subgroups $1 \triangleleft G_1 \triangleleft \cdots \trianglel
Externí odkaz:
http://arxiv.org/abs/1603.02493
The notion of a glider representation of a chain of normal subgroups of a group is defined by a new structure, i.e. a fragment for a suitable filtration on the group ring. This is a special case of general glider representations defined for a positiv
Externí odkaz:
http://arxiv.org/abs/1602.05338
Publikováno v:
In Journal of Algebra 1 July 2020 553:175-210
Let $H$ be a twisted Calabi-Yau (CY) algebra and $\sigma$ a 2-cocycle on $H$. Let $A$ be an $N$-Koszul twisted CY algebra such that $A$ is a graded $H^\sigma$-module algebra. We show that the cleft extension $A#_\sigma H$ is also a twisted CY algebra
Externí odkaz:
http://arxiv.org/abs/1405.6040
The quasi-Frobenius-Lusztig kernel ${Q}\mathbf{u}_{q}(\mathfrak{sl}_{2})$ associated with $\mathfrak{sl}_{2}$ has been constructed in \cite{Liu}. In this paper we study the representations of this small quasi-quantum group. We give a complete list of
Externí odkaz:
http://arxiv.org/abs/1401.6843
Let $A$ be a Koszul Artin-Schelter regular algebra and $\sigma$ an algebra homomorphism from $A$ to $M_{2\times 2}(A)$. We compute the Nakayama automorphisms of a trimmed double Ore extension $A_P[y_1, y_2; \sigma]$ (introduced in \cite{ZZ08}). Using
Externí odkaz:
http://arxiv.org/abs/1401.0330
Let $B$ be a generalized Koszul algebra over a finite dimensional algebra $S$. We construct a bimodule Koszul resolution of $B$ when the projective dimension of $S_B$ equals 2. Using this we prove a Poincar\'e-Birkhoff-Witt (PBW) type theorem for a d
Externí odkaz:
http://arxiv.org/abs/1312.2456