Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Van Otterlo, Martijn"'
Autor:
Lenaers, Nicky, van Otterlo, Martijn
Markov decision processes are typically used for sequential decision making under uncertainty. For many aspects however, ranging from constrained or safe specifications to various kinds of temporal (non-Markovian) dependencies in task and reward stru
Externí odkaz:
http://arxiv.org/abs/2111.03647
Autor:
Hassouni, Ali el, Hoogendoorn, Mark, van Otterlo, Martijn, Eiben, A. E., Muhonen, Vesa, Barbaro, Eduardo
Personalization is very powerful in improving the effectiveness of health interventions. Reinforcement learning (RL) algorithms are suitable for learning these tailored interventions from sequential data collected about individuals. However, learning
Externí odkaz:
http://arxiv.org/abs/1804.03592
Autor:
van Otterlo, Martijn
In the age of algorithms, I focus on the question of how to ensure algorithms that will take over many of our familiar archival and library tasks, will behave according to human ethical norms that have evolved over many years. I start by characterizi
Externí odkaz:
http://arxiv.org/abs/1801.01705
Autor:
van Otterlo, Martijn
Ethics of algorithms is an emerging topic in various disciplines such as social science, law, and philosophy, but also artificial intelligence (AI). The value alignment problem expresses the challenge of (machine) learning values that are, in some wa
Externí odkaz:
http://arxiv.org/abs/1711.06035
Autor:
Antanas, Laura, van Otterlo, Martijn, Oramas Mogrovejo, José, Tuytelaars, Tinne, De Raedt, Luc
Publikováno v:
In Neurocomputing 10 January 2014 123:75-85
Autor:
van Otterlo, Martijn
Publikováno v:
In Journal of Algorithms 2009 64(4):169-191
Publikováno v:
El Hassouni, A, Hoogendoorn, M, Eiben, A E, Van Otterlo, M & Muhonen, V 2019, End-to-End Personalization of Digital Health Interventions using Raw Sensor Data with Deep Reinforcement Learning : A comparative study in digital health interventions for behavior change . in P Barnaghi, G Gottlob, Y Manolopoulos, T Tzouramanis & A Vakali (eds), Proceedings-WI '19 : IEEE/WIC/ACM International Conference on Web Intelligence q . Proceedings-2019 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2019, Association for Computing Machinery, Inc, New York, NY, pp. 258-264, 19th IEEE/WIC/ACM International Conference on Web Intelligence, WI 2019, Thessaloniki, Greece, 13/10/19 . https://doi.org/10.1145/3350546.3352527
We introduce an end-to-end reinforcement learning (RL) solution for the problem of sending personalized digital health interventions. Previous work has shown that personalized interventions can be obtained through RL using simple, discrete state info
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c1e0ad5428d15e880c4d285ba4b360e8
http://www.scopus.com/inward/record.url?scp=85074749219&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85074749219&partnerID=8YFLogxK
Autor:
El Hassouni, Ali, Hoogendoorn, Mark, Eiben, A. E., Van Otterlo, Martijn, Muhonen, Vesa, Barnaghi, Payam, Gottlob, Georg, Manolopoulos, Yannis, Tzouramanis, Theodoros, Vakali, Athena
Publikováno v:
Proceedings-WI '19: IEEE/WIC/ACM International Conference on Web Intelligence q, 258-264
STARTPAGE=258;ENDPAGE=264;TITLE=Proceedings-WI '19
STARTPAGE=258;ENDPAGE=264;TITLE=Proceedings-WI '19
We introduce an end-to-end reinforcement learning (RL) solution for the problem of sending personalized digital health interventions. Previous work has shown that personalized interventions can be obtained through RL using simple, discrete state info
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::d7843aef0606c5c82c64429e2a2acb18
https://research.vu.nl/en/publications/5c0d7cf7-e11e-41ce-8a0c-38728ececd1d
https://research.vu.nl/en/publications/5c0d7cf7-e11e-41ce-8a0c-38728ececd1d
Project BLIIPS: Making the Physical Public Library more Intelligent through Artificial Intelligence.
Autor:
van Otterlo, Martijn1
Publikováno v:
Qualitative & Quantitative Methods in Libraries. Jun2016, Vol. 5 Issue 2, p287-300. 14p.
Publikováno v:
XAILA workshop on explainable AI for law, as part of the JURIX conference on legal AI.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::8d075e322bb3938ef44b288ae7f9f9d9
https://research.tilburguniversity.edu/en/publications/69fd25ff-cb99-41f2-bcdf-da9f5faf2567
https://research.tilburguniversity.edu/en/publications/69fd25ff-cb99-41f2-bcdf-da9f5faf2567