Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Van, H. Vu"'
Autor:
Terence Tao, Van H. Vu
Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and
Autor:
Tao, Terence, Van H. Vu
Publikováno v:
Annals of Mathematics, 2009 Mar 01. 169(2), 595-632.
Externí odkaz:
https://www.jstor.org/stable/40345453
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AE,..., Iss Proceedings (2005)
Given positive integers $q$, $n$ and $d$, denote by $A_q(n,d)$ the maximum size of a $q$-ary code of length $n$ and minimum distance $d$. The famous Gilbert-Varshamov bound asserts that $A_q(n,d+1) \geq q^n / V_q(n,d)$, where $V_q(n,d)=\sum_{i=0}^d \
Externí odkaz:
https://doaj.org/article/49b6799b72c649efabf45ae78ebfe386
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AE,..., Iss Proceedings (2005)
For convex bodies $K$ with $\mathcal{C}^2$ boundary in $\mathbb{R}^d$, we provide results on the volume of random polytopes with vertices chosen along the boundary of $K$ which we call $\textit{random inscribing polytopes}$. In particular, we prove r
Externí odkaz:
https://doaj.org/article/cfb7869a59c142c8892bc8579bdcd6bb
Autor:
Whittaker, J. A., Reizenstein, P., Callender, Sheila T., Cornwell, G. G., Delamore, I. W., Gale, R. P., Gobbi, M., Jacobs, P., Lantz, B., Maiolo, A. T., Rees, J. K. H., Van Slyck, E. J., Van, H. Vu
Publikováno v:
British Medical Journal (Clinical Research Edition), 1981 Feb . 282(6265), 692-695.
Externí odkaz:
https://www.jstor.org/stable/29500916
Autor:
Van H. Vu
The theory of random matrices is an amazingly rich topic in mathematics. Random matrices play a fundamental role in various areas such as statistics, mathematical physics, combinatorics, theoretical computer science, number theory and numerical analy
Autor:
Terence Tao, Van H. Vu
Publikováno v:
Additive Combinatorics. :xi-xviii
Publikováno v:
IEEE Transactions on Information Theory. 51:3200-3208
Given positive integers q,n, and d, denote by A/sub q/(n,d) the maximum size of a q-ary code of length n and minimum distance d. The famous Gilbert-Varshamov bound asserts that A/sub q/(n,d+1)/spl ges/q/sup n//V/sub q/(n,d) where V/sub q/(n,d)=/spl S
Autor:
Van H. Vu, Endre Szemerédi
Publikováno v:
Proceedings of the London Mathematical Society. 90:273-296
In this paper we obtain optimal bounds for the length of the longest arithmetic progression in various kinds of sum-sets. As an application, we derive a sharp estimate for the number of sets $A$ of residues modulo a prime $n$ such that no subsum of $
Publikováno v:
Proceedings of the London Mathematical Society. 86:273-301
A cover of a hypergraph is a collection of edges whose union contains all vertices. Let $H = (V, E)$ be a $k$-uniform, $D$-regular hypergraph on $n$ vertices, in which no two vertices are contained in more than $o(D / e^{2k} \log D)$ edges as $D$ ten