Zobrazeno 1 - 10
of 5 206
pro vyhledávání: '"Valor propio"'
Autor:
Óscar Andrés Montaño Carreño
Publikováno v:
Revista Integración, Vol 31, Iss 1, Pp 53-58 (2013)
Sea Br una bola n-dimensional dotada con una métrica rotacionalmente invariante y con curvaturas seccionales radiales no positivas. Si ν es el primer valor propio de Steklov y h es la curvatura media sobre el borde de la bola, nosotros demostram
Externí odkaz:
https://doaj.org/article/95622ac2151e4cb28d302cbcd11a95c5
Autor:
Sanjuán, Arturo1 aasanjuanc@udistrital.edu.co
Publikováno v:
Revista Científica. sep-dic2016, Vol. 4 Issue 27, p402-406. 5p.
Autor:
De Mendoza, Adriana1, Reina, John H.1
Publikováno v:
Revista Colombiana de Física. 2009, Vol. 41 Issue 3, p764-767. 4p. 4 Diagrams.
Autor:
Gigola, Silvia Viviana
Un área importante de la Matemática Aplicada es el Análisis Matricial dado que muchos problemas pueden reformularse en términos de matrices y de así facilitar su resolución. El problema de valor propio inverso consiste en la reconstrucción de
Externí odkaz:
http://hdl.handle.net/10251/106367
Autor:
Silvia Viviana Gigola
Publikováno v:
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
instname
Un área importante de la Matemática Aplicada es el Análisis Matricial dado que muchos problemas pueden reformularse en términos de matrices y de así facilitar su resolución. El problema de valor propio inverso consiste en la reconstrucción de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cd86d09069e62f67bd3eb797deef9ce8
http://hdl.handle.net/10251/106367
http://hdl.handle.net/10251/106367
Publikováno v:
Revista de Ciencias, Volume: 20, Issue: 2, Pages: 55-61, Published: DEC 2016
Resumen Sea M un elipsoide en ℝ n ; n ≥ 3, si la segunda forma fundamental π satisface π(υ,υ) ≥ k |ʋ|2 sobre ∂M, k > 0, entonces el primer valor propio de Steklov ν 1(M) satisface la desigualdad ν 1(M) ≥ k. La igualdad se obtiene si
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______618::cda216e4cfa1e02645147a4862cc5649
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-19352016000200055&lng=en&tlng=en
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-19352016000200055&lng=en&tlng=en
Autor:
Óscar Andrés Montaño Carreño
Publikováno v:
Repositorio Digital Univalle
Universidad del Valle
instacron:Universidad del Valle
Universidad del Valle
instacron:Universidad del Valle
Resumen En este artículo se proporciona una cota superior para el primer valor propio del problema de Steklov en un dominio de Rn. Abstract In this paper we provide an upper bound for the fi rst eigenvalue of the Steklov problem in a domain of Rn.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e8df85384f66d7dbeb54de02db52692
Autor:
Óscar Andrés Montaño Carreño
Publikováno v:
Repositorio Digital Univalle
Universidad del Valle
instacron:Universidad del Valle
Universidad del Valle
instacron:Universidad del Valle
Resumen En este art´ıculo se proporciona una cota inferior del primer valor propio de Neumann para un dominio eucl´ıdeo con simetr´ıa con respecto. Abstract In this paper, we provide a lower bound of the fi rst Neumann eigenvalue of a Euclidean
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b7a193ecbfcb5059e25e4765b888b87
Autor:
Rodríguez Prieto, Maykol
Publikováno v:
Allouch, N.(2015): ``On the private provision of public goods on networks", Journal of Economics Theory 157(527-552).
Barabási, A-L., Albert, R.(1999): "Emergence of scaling in random networks", Science 286:509–512, pmid:10521342.
Bell, F. K., Cvetkovic, D., Rowlinson, P., Slobodan K.S.(2008a): "Graphs for which the Least Eigenvalue is Minimal, I.” Linear Algebra and its Applications 429 (1): 234–41.
Bell, F. K., Cvetkovic, D., Rowlinson, P., Slobodan K.S. (2008b): "Graphs for which the least eigenvalue is minimal, II.” Linear Algebra and its Applications 429 (8-9): 2168–79.
Bergstrom, Th., Lawrence B., y Varian H. (1986): "On the private provision of public goods.” Journal of Public Economics 29 (1): 25–49.
Bramoullé, Y., Djebbari, H. y Fortin, B. (2009): "Identification of peer effects through social networks", Journal of Econometrics 150 (2009) 41–55.
Brouwer, A.E., Haemers, W.H.(2011):"Spectra of graphs", Monograph, Springer.
Calvó-Armengol, A., Patacchini, E. and Zenou, Y. (2008): "Peer effects and social networks in education", IZA discussion papers, No. 3859, http://nbnresolving.de/urn:nbn:de:101:1-20081202188.
Erdös, P., Rényi, A. (1959): "On random graphs. I.", Publicationes Mathematicae 6: 290–297.
Golub, B., Jackson, M.(2010): "Naïve learning in social networks and the wisdom of crowds" American Economic Journal: Microeconomics, 2:1, 112–149.
Goyal, S. (2007), Connections: "An introduction to the economics of networks, Princeton: Princeton University Press.
Jackson, M.O. (2008): "Social and economic networks", Princeton University Press: NJ.
Jensen, R. (2007): "The digital provide: Information(technology),market performance, and welfare in the south indian fisheries sector", The Quarterly Journal of Economics, Vol CXXII, Issue 3.
Jackson M., Rogers, B. (2007): "Meeting strangers and friends of friends: How random are social networks", American Economics Review 2007, 97(3): 890-915.
John P. Scott(2000): "Social network analysis: A handbook", Sage Publications Ltd.
Lee, David S. and Kalb, Jeffrey L. (2008): ``Network topology analysis", Sandia National Laboratories.
Nica, B. (2016): "A brief introduction to spectral graph theory", arXiv:1609.08072 [math.CO]
Robin J. Wilson. (1996): ``Introduction to graph theory", Prentice hall.
Smith, R. (2006), "A Spectral Theoretic Proof of Perron–Frobenius", Mathematical Proceedings of the Royal Irish Academy, 102 (1): 29–35.
Spielman, D.(2012): "Spectral graph theory and its applications. Online lecture notes". http://www.cs.yale.edu/homes/spielman/eigs/
Wasserman, S. and K. Faust (1994), "Social network analysis. Methods and applications", Cambridge: Cambridge University Press.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Barabási, A-L., Albert, R.(1999): "Emergence of scaling in random networks", Science 286:509–512, pmid:10521342.
Bell, F. K., Cvetkovic, D., Rowlinson, P., Slobodan K.S.(2008a): "Graphs for which the Least Eigenvalue is Minimal, I.” Linear Algebra and its Applications 429 (1): 234–41.
Bell, F. K., Cvetkovic, D., Rowlinson, P., Slobodan K.S. (2008b): "Graphs for which the least eigenvalue is minimal, II.” Linear Algebra and its Applications 429 (8-9): 2168–79.
Bergstrom, Th., Lawrence B., y Varian H. (1986): "On the private provision of public goods.” Journal of Public Economics 29 (1): 25–49.
Bramoullé, Y., Djebbari, H. y Fortin, B. (2009): "Identification of peer effects through social networks", Journal of Econometrics 150 (2009) 41–55.
Brouwer, A.E., Haemers, W.H.(2011):"Spectra of graphs", Monograph, Springer.
Calvó-Armengol, A., Patacchini, E. and Zenou, Y. (2008): "Peer effects and social networks in education", IZA discussion papers, No. 3859, http://nbnresolving.de/urn:nbn:de:101:1-20081202188.
Erdös, P., Rényi, A. (1959): "On random graphs. I.", Publicationes Mathematicae 6: 290–297.
Golub, B., Jackson, M.(2010): "Naïve learning in social networks and the wisdom of crowds" American Economic Journal: Microeconomics, 2:1, 112–149.
Goyal, S. (2007), Connections: "An introduction to the economics of networks, Princeton: Princeton University Press.
Jackson, M.O. (2008): "Social and economic networks", Princeton University Press: NJ.
Jensen, R. (2007): "The digital provide: Information(technology),market performance, and welfare in the south indian fisheries sector", The Quarterly Journal of Economics, Vol CXXII, Issue 3.
Jackson M., Rogers, B. (2007): "Meeting strangers and friends of friends: How random are social networks", American Economics Review 2007, 97(3): 890-915.
John P. Scott(2000): "Social network analysis: A handbook", Sage Publications Ltd.
Lee, David S. and Kalb, Jeffrey L. (2008): ``Network topology analysis", Sandia National Laboratories.
Nica, B. (2016): "A brief introduction to spectral graph theory", arXiv:1609.08072 [math.CO]
Robin J. Wilson. (1996): ``Introduction to graph theory", Prentice hall.
Smith, R. (2006), "A Spectral Theoretic Proof of Perron–Frobenius", Mathematical Proceedings of the Royal Irish Academy, 102 (1): 29–35.
Spielman, D.(2012): "Spectral graph theory and its applications. Online lecture notes". http://www.cs.yale.edu/homes/spielman/eigs/
Wasserman, S. and K. Faust (1994), "Social network analysis. Methods and applications", Cambridge: Cambridge University Press.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
La teoría de redes, basada en la teoría de grafos; estructura propia de la matemática discreta tiene grandes aplicaciones en distintas ramas de la ciencia, esta teoría, es utilizada para estudiar y analizar distintos procesos socioeconómicos. Br
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7ed09a1624a38a4929d0bb18c842d6df
http://repository.urosario.edu.co/handle/10336/19099
http://repository.urosario.edu.co/handle/10336/19099