Zobrazeno 1 - 10
of 157
pro vyhledávání: '"Vallejos, Catalina"'
Clinical prediction models are statistical or machine learning models used to quantify the risk of a certain health outcome using patient data. These can then inform potential interventions on patients, causing an effect called performative predictio
Externí odkaz:
http://arxiv.org/abs/2406.03161
When modelling competing risks survival data, several techniques have been proposed in both the statistical and machine learning literature. State-of-the-art methods have extended classical approaches with more flexible assumptions that can improve p
Externí odkaz:
http://arxiv.org/abs/2212.05157
Autor:
Liley, James, Emerson, Samuel R, Mateen, Bilal A, Vallejos, Catalina A, Aslett, Louis J M, Vollmer, Sebastian J
Machine learning is increasingly being used to generate prediction models for use in a number of real-world settings, from credit risk assessment to clinical decision support. Recent discussions have highlighted potential problems in the updating of
Externí odkaz:
http://arxiv.org/abs/2010.11530
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Constantine-Cooke, Nathan, Monterrubio-Gómez, Karla, Plevris, Nikolas, Derikx, Lauranne A.A.P., Gros, Beatriz, Jones, Gareth-Rhys, Marioni, Riccardo E., Lees, Charlie W., Vallejos, Catalina A.
Publikováno v:
In Clinical Gastroenterology and Hepatology October 2023 21(11):2918-2927
Autor:
Arenas, Diego, Atkins, Jon, Austin, Claire, Beavan, David, Egea, Alvaro Cabrejas, Carlysle-Davies, Steven, Carter, Ian, Clarke, Rob, Cunningham, James, Doel, Tom, Forrest, Oliver, Gabasova, Evelina, Geddes, James, Hetherington, James, Jersakova, Radka, Kiraly, Franz, Lawrence, Catherine, Manser, Jules, O'Reilly, Martin T., Robinson, James, Sherwood-Taylor, Helen, Tierney, Serena, Vallejos, Catalina A., Vollmer, Sebastian, Whitaker, Kirstie
We present a policy and process framework for secure environments for productive data science research projects at scale, by combining prevailing data security threat and risk profiles into five sensitivity tiers, and, at each tier, specifying recomm
Externí odkaz:
http://arxiv.org/abs/1908.08737
Linear shrinkage estimators of a covariance matrix --- defined by a weighted average of the sample covariance matrix and a pre-specified shrinkage target matrix --- are popular when analysing high-throughput molecular data. However, their performance
Externí odkaz:
http://arxiv.org/abs/1809.08024
Autor:
Mills, Nicholas L., Strachan, Fiona E., Tuck, Christopher, Shah, Anoop S.V., Anand, Atul, Bularga, Anda, Wereski, Ryan, Lowry, Matthew T.H., Taggart, Caelan, Ferry, Amy V., Lee, Kuan Ken, Chapman, Andrew R., Sandeman, Dennis, Adamson, Philip D., Stables, Catherine L., Vallejos, Catalina A., Tsanas, Athanasios, Marshall, Lucy, Stewart, Stacey D., Fujisawa, Takeshi, McPherson, Jean, McKinlay, Lynn, Newby, David E., Fox, Keith A.A., Berry, Colin, Walker, Simon, Weir, Christopher J., Ford, Ian, Gray, Alasdair, Collinson, Paul O., Apple, Fred S., Reid, Alan, Cruikshank, Anne, Findlay, Iain, Amoils, Shannon, McAllister, David A., Maguire, Donogh, Stevens, Jennifer, Norrie, John, Andrews, Jack P.M., Moss, Alastair, Anwar, Mohamed S., Hung, John, Malo, Jonathan, Fischbacher, Colin M., Croal, Bernard L., Leslie, Stephen J., Keerie, Catriona, Parker, Richard A., Walker, Allan, Harkess, Ronnie, Wackett, Tony, Weir, Christopher, Armstrong, Roma, Stirling, Laura, MacDonald, Claire, Sadat, Imran, Finlay, Frank, Charles, Heather, Linksted, Pamela, Young, Stephen, Alexander, Bill, Duncan, Chris, Gallacher, Peter J., Miller-Hodges, Eve, Farrah, Tariq E., Halbesma, Nynke, Blackmur, James P., Cruickshank, Anne, Dhaun, Neeraj
Publikováno v:
In Kidney International July 2022 102(1):149-159
Autor:
Mills, Nicholas L, Strachan, Fiona E, Tuck, Christopher, Shah, Anoop SV, Anand, Atul, Chapman, Andrew R, Ferry, Amy V, Lee, Kuan Ken, Doudesis, Dimitrios, Bularga, Anda, Wereski, Ryan, Taggart, Caelan, Lowry, Matthew TH, Mendusic, Filip, Kimenai, Dorien M, Sandeman, Dennis, Adamson, Philip D, Stables, Catherine L, Vallejos, Catalina A, Tsanas, Athanasios, Marshall, Lucy, Stewart, Stacey D, Fujisawa, Takeshi, Hautvast, Mischa, McPherson, Jean, McKinlay, Lynn, Ford, Ian, Newby, David E, Fox, Keith AA, Berry, Colin, Walker, Simon, Weir, Christopher J, Gray, Alasdair, Collinson, Paul O, Apple, Fred S, Reid, Alan, Cruikshank, Anne, Findlay, Iain, Amoils, Shannon, McAllister, David A, Maguire, Donogh, Stevens, Jennifer, Norrie, John, Andrews, Jack PM, Moss, Alastair, Anwar, Mohamed S, Hung, John, Malo, Jonathan, Fischbacher, Colin, Croal, Bernard L, Leslie, Stephen J, Keerie, Catriona, Parker, Richard A, Walker, Allan, Harkess, Ronnie, Wackett, Tony, Armstrong, Roma, Stirling, Laura, MacDonald, Claire, Sadat, Imran, Finlay, Frank, Charles, Heather, Linksted, Pamela, Young, Stephen, Alexander, Bill, Duncan, Chris, Yang, Jason, Shah, Anoop S V, Pickering, John W, Than, Martin P
Publikováno v:
In The Lancet Digital Health May 2022 4(5):e300-e308
Autor:
Vallejos, Catalina A.
This thesis covers theoretical and practical aspects of Bayesian inference and survival analysis, which is a powerful tool for the analysis of the time until a certain event of interest occurs. This dissertation focuses on non-standard models inspire
Externí odkaz:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618979