Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Valery A. Lunts"'
Autor:
Valery A. Lunts
Publikováno v:
Moscow Mathematical Journal. 22:705-739
Autor:
Michael Larsen, Valery A. Lunts
Publikováno v:
Algebra & Number Theory. 15:773-783
Given a finite dimensional Lie algebra $L$ let $I$ be the augmentation ideal in the universal enveloping algebra $U(L)$. We study the conditions on $L$ under which the $Ext$-groups $Ext (k,k)$ for the trivial $L$-module $k$ are the same when computed
Autor:
Alexey Elagin, Valery A. Lunts
Publikováno v:
Journal of Algebra. 569:334-376
In this note we discuss three notions of dimension for triangulated categories: Rouquier dimension, diagonal dimension and Serre dimension. We prove some basic properties of these dimensions, compare them and discuss open problems.
Publikováno v:
Moscow Mathematical Journal. 20:277-309
We prove smoothness in the dg sense of the bounded derived category of finitely generated modules over any finite-dimensional algebra over a perfect field, hereby answering a question of Iyama. More generally, we prove this statement for any algebra
Publikováno v:
Bergh, D, Gorchinskiy, S, Larsen, M & Lunts, V 2021, ' Categorical measures for finite group actions ', Journal of Algebraic Geometry, vol. 30, no. 4, pp. 685-757 . https://doi.org/10.1090/jag/768
Journal of Algebraic Geometry
Journal of Algebraic Geometry
Given a variety with a finite group action, we compare its equivariant categorical measure, that is, the categorical measure of the corresponding quotient stack, and the categorical measure of the extended quotient. Using weak factorization for orbif
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eaeb4ffb406571081b4253b23d05c8be
https://curis.ku.dk/portal/da/publications/categorical-measures-for-finite-group-actions(15351af0-aa98-439a-8769-5113fddc3c5d).html
https://curis.ku.dk/portal/da/publications/categorical-measures-for-finite-group-actions(15351af0-aa98-439a-8769-5113fddc3c5d).html
Autor:
Valery A. Lunts, Alexey Elagin
Let $X_N$ be the second infinitesimal neighborhood of a closed point in $N$-dimensional affine space. In this note we study $D^b(coh\, X_N)$, the bounded derived category of coherent sheaves on $X_N$. We show that for $N\geq 2$ the lattice of triangu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b8933eb2e8f6bab821b40949082ab66d
http://arxiv.org/abs/2002.06416
http://arxiv.org/abs/2002.06416
Autor:
Michael Larsen, Valery A. Lunts
Publikováno v:
Duke Math. J. 169, no. 1 (2020), 1-30
Let $K_0(\mathrm{Var}_{\mathbb{Q}})[1/\mathbb{L}]$ denote the Grothendieck ring of $\mathbb{Q}$-varieties with the Lefschetz class inverted. We show that there exists a K3 surface X over $\mathbb{Q}$ such that the motivic zeta function $\zeta_X(t) :=
Autor:
Valery A. Lunts, Victor Przyjalkowski
Publikováno v:
Advances in Mathematics. 329:189-216
We consider the conjectures from [10] about Landau–Ginzburg Hodge numbers associated to tamely compactifiable Landau–Ginzburg models. We test these conjectures in case of dimension two, verifying some and giving a counterexample to the other.
Publikováno v:
Математический сборник. 209:87-116
Autor:
Valery A. Lunts, Alexey Elagin
Publikováno v:
Advances in Mathematics. 378:107525
We classify triangulated categories that are equivalent to finitely generated thick subcategories T ⊂ D b ( coh C ) for smooth projective curves C over an algebraically closed field.