Zobrazeno 1 - 10
of 129
pro vyhledávání: '"Valeria Simoncini"'
Autor:
Valeria Simoncini, Yue Hao
Publikováno v:
SIAM Journal on Matrix Analysis and Applications. 44:359-381
Publikováno v:
Advances in Computational Mathematics. 49
The synthesis of suboptimal feedback laws for controlling nonlinear dynamics arising from semi-discretized PDEs is studied. An approach based on the State-dependent Riccati Equation (SDRE) is presented for 2 and ∞ control problems. Depending on the
Autor:
Stefano Pozza, Valeria Simoncini
Publikováno v:
Numerische Mathematik. 148:99-126
Rational Krylov subspaces have become a fundamental ingredient in numerical linear algebra methods associated with reduction strategies. Nonetheless, many structural properties of the reduced matrices in these subspaces are not fully understood. We a
Autor:
Valeria Simoncini
Publikováno v:
Bollettino dell'Unione Matematica Italiana. 13:429-439
We propose a new dense method for determining the numerical solution to a class of third order tensor linear equations. The approach does not require the use of the coefficient matrix in Kronecker form, thus it allows the treatment of structured very
Autor:
Margherita Porcelli, Valeria Simoncini
Publikováno v:
Linear algebra and its applications 664 (2023): 349–368. doi:10.1016/j.laa.2023.01.024
Given the matrix equation ${\bf A X} + {\bf X B} + f({\bf X }) {\bf C} ={\bf D}$ in the unknown $n\times m$ matrix ${\bf X }$, we analyze existence and uniqueness conditions, together with computational solution strategies for $f \,: \mathbb{R}^{n \t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a0b5afbda74c292b91d9e4e89c8ce37
Publikováno v:
Optimization methods & software
35 (2019): 304–328. doi:10.1080/10556788.2019.1670177
info:cnr-pdr/source/autori:N.I. Gould and V. Simoncini/titolo:Error estimates for iterative algorithms for minimizing regularized quadratic subproblems/doi:10.1080%2F10556788.2019.1670177/rivista:Optimization methods & software (Print)/anno:2019/pagina_da:304/pagina_a:328/intervallo_pagine:304–328/volume:35
35 (2019): 304–328. doi:10.1080/10556788.2019.1670177
info:cnr-pdr/source/autori:N.I. Gould and V. Simoncini/titolo:Error estimates for iterative algorithms for minimizing regularized quadratic subproblems/doi:10.1080%2F10556788.2019.1670177/rivista:Optimization methods & software (Print)/anno:2019/pagina_da:304/pagina_a:328/intervallo_pagine:304–328/volume:35
We derive bounds for the objective errors and gradient residuals when finding approximations to the solution of common regularized quadratic optimization problems within evolving Krylov spaces. These provide upper bounds on the number of iterations r
Autor:
Stefano Pozza, Valeria Simoncini
Publikováno v:
BIT (Nord. Tidskr. Inf-Behandl.) 59 (2019): 969–986. doi:10.1007/s10543-019-00763-6
info:cnr-pdr/source/autori:Pozza S.; Simoncini V./titolo:Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices/doi:10.1007%2Fs10543-019-00763-6/rivista:BIT (Nord. Tidskr. Inf-Behandl.)/anno:2019/pagina_da:969/pagina_a:986/intervallo_pagine:969–986/volume:59
info:cnr-pdr/source/autori:Pozza S.; Simoncini V./titolo:Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices/doi:10.1007%2Fs10543-019-00763-6/rivista:BIT (Nord. Tidskr. Inf-Behandl.)/anno:2019/pagina_da:969/pagina_a:986/intervallo_pagine:969–986/volume:59
This paper derives a priori residual-type bounds for the Arnoldi approximation of a matrix function together with a strategy for setting the iteration accuracies in the inexact Arnoldi approximation of matrix functions. Such results are based on the
Autor:
Giulia Sacchi, Valeria Simoncini
Publikováno v:
SIAM Journal on Matrix Analysis and Applications. 40:542-563
The Generalized Minimal RESidual (gmres) method is a well-established strategy for iteratively solving a large linear system [Formula presented], where [Formula presented] is a nonsymmetric and nonsingular coefficient matrix, and [Formula presented].
Publikováno v:
Lecture Notes in Computational Science and Engineering ISBN: 9783030558734
ENUMATH
Numerical Mathematics and Advanced Applications ENUMATH 2019 : European Conference, Egmond aan Zee, The Netherlands, September 30-October 4
Lecture Notes in Computational Science and Engineering
ENUMATH
Numerical Mathematics and Advanced Applications ENUMATH 2019 : European Conference, Egmond aan Zee, The Netherlands, September 30-October 4
Lecture Notes in Computational Science and Engineering
Variational formulations of time-dependent PDEs in space and time yield (d + 1)-dimensional problems to be solved numerically. This increases the number of unknowns as well as the storage amount. On the other hand, this approach enables adaptivity in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aaed9e00895823e71a77335bba83be7e
https://doi.org/10.1007/978-3-030-55874-1_104
https://doi.org/10.1007/978-3-030-55874-1_104
Autor:
Valeria Simoncini, Yue Hao
We explore algebraic strategies for numerically solving linear elliptic partial differential equations in polygonal domains. To discretize the polygon by means of structured meshes, we employ Schwarz–Christoffel conformal mappings, leading to a mul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c49f1aa95a44fca54a355e877c9e653
https://hdl.handle.net/11585/838360
https://hdl.handle.net/11585/838360