Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Valentino Smaldore"'
Autor:
Valentino Smaldore
Publikováno v:
Examples and Counterexamples, Vol 3, Iss , Pp 100097- (2023)
Minimal codes are being intensively studied in last years. [n,k]q-minimal linear codes are in bijection with strong blocking sets of size n in PG(k−1,q)and a lower bound for the size of strong blocking sets is given by (k−1)(q+1)≤n. In this not
Externí odkaz:
https://doaj.org/article/dc7d56e8e1c54988b4e930afab9942d6
In this paper we provide constructive lower bounds on the sizes of the largest partial ovoids of the symplectic polar spaces ${\cal W}(3, q)$, $q$ odd square, $q \not\equiv 0 \pmod{3}$, ${\cal W}(5, q)$ and of the Hermitian polar spaces ${\cal H}(4,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ffb47f2d4b61800c437d6930a319c5e
https://hdl.handle.net/11589/245382
https://hdl.handle.net/11589/245382
Let P be a finite classical polar space of rank d . An m -regular system with respect to ( k − 1 ) -dimensional projective spaces of P , 1 ≤ k ≤ d − 1 , is a set R of generators of P with the property that every ( k − 1 ) -dimensional proje
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8ffd5f0c1653ccd9ac2d1efc311aac2d
https://hdl.handle.net/11589/244751
https://hdl.handle.net/11589/244751
Finding Hemisystems is a challenging problem and just few examples arising from the Hermitian surface are known. A recent method to obtain Hemisystems is based on using maximal curves. Along this side of research, we provide new examples of Hemisyste
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1daab468ff2952d216efe7bd10ae536
http://arxiv.org/abs/2105.09656
http://arxiv.org/abs/2105.09656
Let $$H(n, q^2)$$ H ( n , q 2 ) be a non-degenerate Hermitian variety of $$PG(n,q^2)$$ P G ( n , q 2 ) , $$n \ge 2$$ n ≥ 2 . Let $$NU(n+1,q^2)$$ N U ( n + 1 , q 2 ) be the graph whose vertices are the points of $$PG(n,q^2) \setminus H(n,q^2)$$ P G
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1fd7280f1ed9cbafb86c3b45a97d72a9
Let H ( n , q 2 ) be a non–degenerate Hermitian variety of PG ( n , q 2 ) , n ≥ 2 . Let NU ( n + 1 , q 2 ) be the graph whose vertices are the points of PG ( n , q 2 ) ∖ H ( n , q 2 ) and two vertices P 1 , P 2 are adjacent if the line joining
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9cd1c6365599bd80af5df928389fc3e8
https://hdl.handle.net/11589/244746
https://hdl.handle.net/11589/244746