Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Valentina Parigi"'
Autor:
Victor Roman-Rodriguez, David Fainsin, Guilherme L. Zanin, Nicolas Treps, Eleni Diamanti, Valentina Parigi
Publikováno v:
Physical Review Research, Vol 6, Iss 4, p 043113 (2024)
Continuous variable encoding of quantum information requires the deterministic generation of highly correlated quantum states of light in the form of quantum networks, which, in turn, necessitates the controlled generation of a large number of squeez
Externí odkaz:
https://doaj.org/article/8086fde79a0d48309acd0e0aa0d5bafc
Autor:
Johannes Nokkala, Rodrigo Martínez-Peña, Gian Luca Giorgi, Valentina Parigi, Miguel C. Soriano, Roberta Zambrini
Publikováno v:
Communications Physics, Vol 4, Iss 1, Pp 1-11 (2021)
Most attempts to delineate quantum machine-learning-related computing capabilities of continuous variables states have relied on non-Gaussian resources. Here, the authors show that linear systems with continuous-variable Gaussian states are a promisi
Externí odkaz:
https://doaj.org/article/6d99dbbbdff343148f879fffd11fbb76
Publikováno v:
New Journal of Physics, Vol 24, Iss 4, p 043031 (2022)
Spectro-temporal modes of light can be exploited for the generation of high-dimensional Gaussian quantum states. Such states are at the basis of continuous variable quantum information protocols where they have to support mode-selective non-Gaussian
Externí odkaz:
https://doaj.org/article/fabef2b9d4314215af6ff8fd548a5595
Autor:
Ulysse Chabaud, Ganaël Roeland, Mattia Walschaers, Frédéric Grosshans, Valentina Parigi, Damian Markham, Nicolas Treps
Publikováno v:
PRX Quantum, Vol 2, Iss 2, p 020333 (2021)
We derive a theoretical framework for the experimental certification of non-Gaussian features of quantum states using double homodyne detection. We rank experimental non-Gaussian states according to the recently defined stellar hierarchy and we propo
Externí odkaz:
https://doaj.org/article/7eadb69d01204d6984f85d293bbcf211
Publikováno v:
New Journal of Physics, Vol 23, Iss 6, p 063039 (2021)
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications. While conditional preparation is a highly successful approach to preparing such states, their quality is limited by detector non-idealit
Externí odkaz:
https://doaj.org/article/3dafd58fccae4095a5e677dd0c1fb551
Publikováno v:
PRX Quantum, Vol 1, Iss 2, p 020305 (2020)
We develop a general formalism, based on the Wigner function representation of continuous-variable quantum states, to describe the action of an arbitrary conditional operation on a multimode Gaussian state. We apply this formalism to several examples
Externí odkaz:
https://doaj.org/article/78469c8ed8414518899783bec55364f3
Autor:
Francesca Sansavini, Valentina Parigi
Publikováno v:
Entropy, Vol 22, Iss 1, p 26 (2019)
Complex networks structures have been extensively used for describing complex natural and technological systems, like the Internet or social networks. More recently, complex network theory has been applied to quantum systems, where complex network to
Externí odkaz:
https://doaj.org/article/ccbc29b87d0d4f50aa5c884157acfdab
Autor:
Lincoln D. Carr, Valentina Parigi
Publikováno v:
Science. 379:984-985
A negative-temperature heat engine is achieved with photons
Publikováno v:
Quantum Technologies 2022.
Autor:
Miguel C. Soriano, Gian Luca Giorgi, Valentina Parigi, Rodrigo Martínez-Peña, Roberta Zambrini, Johannes Nokkala
Publikováno v:
Communications Physics, Vol 4, Iss 1, Pp 1-11 (2021)
Digital.CSIC. Repositorio Institucional del CSIC
instname
Communications Physics
Communications Physics, Nature Research, 2021, 4 (1), ⟨10.1038/s42005-021-00556-w⟩
Digital.CSIC: Repositorio Institucional del CSIC
Consejo Superior de Investigaciones Científicas (CSIC)
Digital.CSIC. Repositorio Institucional del CSIC
instname
Communications Physics
Communications Physics, Nature Research, 2021, 4 (1), ⟨10.1038/s42005-021-00556-w⟩
Digital.CSIC: Repositorio Institucional del CSIC
Consejo Superior de Investigaciones Científicas (CSIC)
We establish the potential of continuous-variable Gaussian states of linear dynamical systems for machine learning tasks. Specifically, we consider reservoir computing, an efficient framework for online time series processing. As a reservoir we consi