Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Valentina Kiritchenko"'
Autor:
Valentina Kiritchenko
Publikováno v:
International Mathematics Research Notices. 2023:3305-3328
A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push–pull) operators in Chow rings. We define convex geometric analogs of push–pull operators and describe their applications to t
Autor:
Valentina Kiritchenko, Maria Padalko
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030983260
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::767b10efe090cdb8146d9f3c84c2844d
https://doi.org/10.1007/978-3-030-98327-7_11
https://doi.org/10.1007/978-3-030-98327-7_11
Autor:
Valentina Kiritchenko
Publikováno v:
Arnold Mathematical Journal. 5:355-371
For classical groups $$SL_n(\mathbb {C})$$, $$SO_n(\mathbb {C})$$ and $$Sp_{2n}(\mathbb {C})$$, we define uniformly geometric valuations on the corresponding complete flag varieties. The valuation in every type comes from a natural coordinate system
Autor:
Valentina Kiritchenko
Publikováno v:
Transformation Groups. 22:387-402
We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo
Publikováno v:
Journal of Combinatorial Theory, Series A. 120:960-969
We discuss the problem of counting vertices in Gelfand-Zetlin polytopes. Namely, we deduce a partial differential equation with constant coefficients on the exponential generating function for these numbers. For some particular classes of Gelfand-Zet
Autor:
Valentina Kiritchenko
Publikováno v:
Schubert Calculus — Osaka 2012, H. Naruse, T. Ikeda, M. Masuda and T. Tanisaki, eds. (Tokyo: Mathematical Society of Japan, 2016)
We define convex-geometric counterparts of divided difference (or Demazure) operators from the Schubert calculus and representation theory. These operators are used to construct inductively polytopes that capture Demazure characters of representation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c9cf068779583ae8c51e2331b2d9108
http://arxiv.org/abs/1307.7234
http://arxiv.org/abs/1307.7234
Publikováno v:
Michigan Math. J. 64, iss. 1 (2015), 3-38
Given a spherical homogeneous space G/H of minimal rank, we provide a simple procedure to describe its embeddings as varieties with torus action in terms of divisorial fans. The torus in question is obtained as the identity component of the quotient
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0840e108fb3446659fcbf199f3b41e6f
http://arxiv.org/abs/1210.4523
http://arxiv.org/abs/1210.4523
We obtain an explicit presentation for the equivariant cobordism ring of a complete flag variety. An immediate corollary is a Borel presentation for the ordinary cobordism ring. Another application is an equivariant Schubert calculus in cobordism. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2e523f8531571f55a7ccc6efe4ec1f9
http://arxiv.org/abs/1104.1089
http://arxiv.org/abs/1104.1089
Autor:
Valentina Kiritchenko
Publikováno v:
International Mathematics Research Notices
I construct a correspondence between the Schubert cycles on the variety of complete flags in C^n and some faces of the Gelfand-Zetlin polytope associated with the irreducible representation of SL_n(C) with a strictly dominant highest weight. The cons
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71f12f6f7ec1094fb7a4a133f82c613c
http://arxiv.org/abs/0906.4866
http://arxiv.org/abs/0906.4866
Autor:
Jens Hornbostel, Valentina Kiritchenko
Publikováno v:
Journal für die Reine und Angewandte Mathematik
We establish a Schubert calculus for Bott-Samelson resolutions in the algebraic cobordism ring of a complete flag variety G/B.
27 pages, Appendix added, slightly abridged version to appear in Crelle
27 pages, Appendix added, slightly abridged version to appear in Crelle
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::005584adffdb650de0b05c9aa73195bd
http://arxiv.org/abs/0903.3936
http://arxiv.org/abs/0903.3936