Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Valentin Nikolaevich Tyutyanov"'
Publikováno v:
Matematicheskie Zametki. 111:233-240
Пусть $\mathfrak F$ - непустой класс групп и $G$ - конечная группа. Множество подгрупп $\Sigma$ группы $G$ называется $G$-покрывающей подгрупповой сист
Publikováno v:
Ricerche di Matematica. 71:205-209
All groups considered are finite. Let $$\mathcal {F}$$ be a formation. A subgroup H of a group G is called K- $$\mathcal {F}$$ -subnormal in G if there exists a chain of subgroups $$\begin{aligned} H=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 201:443-451
Let $$\sigma = \{ {\sigma }_{i} : i \in I \}$$ be a partition of the set $${\mathbb {P}}$$ of all prime numbers. A subgroup X of a finite group G is called $$\sigma $$ -subnormal in G if there is a chain of subgroups $$\begin{aligned} X=X_{0} \subset
Publikováno v:
Matematicheskie Zametki. 109:564-570
Для произвольного разбиения $\sigma$ множества $\mathbb{P}$ всех простых чисел приводится достаточный признак $\sigma$-субнормальности подгруппы в
Publikováno v:
Journal of Algebra. 443:430-440
Let G be a finite group and let r be a prime divisor of the order of G. We prove that if r ≥ 5 and G has the E { r , t } -property for all t ∈ π ( G ) \ { r } , then G is r-solvable. A group G is said to have the E π -property if G possesses a
Publikováno v:
Journal of Algebra. 403:69-76
Subgroup-closed saturated formations F which are closed under taking products of F -subnormal F -subgroups are studied in the paper. Our results can be regarded as further developments in the hunt for a solution of a problem proposed by L.A. Shemetko
Publikováno v:
Matematicheskie Zametki. 95:517-528
Publikováno v:
Matematicheskie Zametki. 85:630-635
Publikováno v:
Matematicheskie Zametki. 61:755-758
Publikováno v:
Математический сборник. 187:97-102