Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Valentin Borozan"'
Autor:
Yannis Manoussakis, R. Saad, Carlos A. J. Martinhon, W. Fernandez de la Vega, H.P. Pham, Valentin Borozan, Rahul Muthu
Publikováno v:
European Journal of Combinatorics. 80:296-310
We consider maximum properly edge-colored trees in edge-colored graphs. We also consider the problem where, given a vertex r , determine whether the graph has a spanning tree rooted at r , such that all root-to-leaf paths are properly colored. We con
Publikováno v:
Discrete Mathematics
Discrete Mathematics, Elsevier, 2017, 340 (8), pp.1897-1902. ⟨10.1016/j.disc.2017.03.013⟩
Discrete Mathematics, Elsevier, 2017, 340 (8), pp.1897-1902. ⟨10.1016/j.disc.2017.03.013⟩
A $c$-edge-colored multigraph has each edge colored with one of the $c$ available colors and no two parallel edges have the same color. A proper Hamiltonian cycle is a cycle containing all the vertices of the multigraph such that no two adjacent edge
Autor:
Raquel Águeda, Yannis Manoussakis, Marina Groshaus, Valentin Borozan, Gervais Mendy, Leandro Montero
Publikováno v:
Graphs and Combinatorics. 33:617-633
Given a $c$-edge-coloured multigraph, a proper Hamiltonian path is a path that contains all the vertices of the multigraph such that no two adjacent edges have the same colour. In this work we establish sufficient conditions for an edge-coloured mult
Autor:
Shinya Fujita, Valentin Borozan, Yannis Manoussakis, N. Narayanan, Derrick Stolee, Michael Ferrara, Michitaka Furuya
Publikováno v:
Journal of Graph Theory. 82:322-333
Given k ≥ 1, a k-proper partition of a graph G is a partition P of V (G) such that each part P of P induces a k-connected subgraph of G. We prove that if G is a graph of order n such that �(G) ≥ √ n, then G has a 2-proper partition with at mo
Publikováno v:
Discrete Mathematics. 312:2694-2699
In this paper we study the existence of properly colored spanning trees in edge-colored graphs, under certain assumptions on the graph, both structural and related to the coloring. The general problem of proper spanning trees in edge-colored graphs i
Autor:
Petru Valicov, Reza Naserasr, Gerard J. Chang, Shinya Fujita, N. Narayanan, Valentin Borozan, Nathann Cohen
Publikováno v:
The Electronic Journal of Combinatorics
The Electronic Journal of Combinatorics, Open Journal Systems, 2015, 22 (2), pp.P2.9
Scopus-Elsevier
The Electronic Journal of Combinatorics, 2015, 22 (2), pp.P2.9
The Electronic Journal of Combinatorics, Open Journal Systems, 2015, 22 (2), pp.P2.9
Scopus-Elsevier
The Electronic Journal of Combinatorics, 2015, 22 (2), pp.P2.9
In this paper we study a generalization of both proper edge-coloring and strong edge-coloring: $k$-intersection edge-coloring, introduced by Muthu, Narayanan and Subramanian. In this coloring, the set $S(v)$ of colors used by edges incident to a vert
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::13b5cd46cf211abf837f2221b565d267
https://hal.archives-ouvertes.fr/hal-01144153
https://hal.archives-ouvertes.fr/hal-01144153
Autor:
Raquel Águeda, Valentin Borozan, Marina Groshaus, Yannis Manoussakis, Gervais Mendy, Leandro Montero
Publikováno v:
Graphs and Combinatorics
Graphs and Combinatorics, 2017, 33 (4), pp.617-633. ⟨10.1016/j.endm.2011.09.002⟩
Graphs and Combinatorics, Springer Verlag, 2017, 33 (4), pp.617-633. ⟨10.1016/j.endm.2011.09.002⟩
Graphs and Combinatorics, 2017, 33 (4), pp.617-633. ⟨10.1016/j.endm.2011.09.002⟩
Graphs and Combinatorics, Springer Verlag, 2017, 33 (4), pp.617-633. ⟨10.1016/j.endm.2011.09.002⟩
A c-edge-colored multigraph has each edge colored with one of the c available colors and no two parallel edges have the same color. A proper hamiltonian path is a path containing all the vertices of the multigraph such that no two adjacent edges have
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d4a2f077e64c5ee77e29f8411dec7c8
https://www.sciencedirect.com/science/article/pii/S1571065311000710
https://www.sciencedirect.com/science/article/pii/S1571065311000710
Autor:
Valentin Borozan, Gérard Cornuéjols
In this paper, we consider a semi-infinite relaxation of mixed-integer linear programs. We show that minimal valid inequalities for this relaxation correspond to maximal lattice-free convex sets, and that they arise from nonnegative, piecewise linear
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91ec7229a1ee29b8aacb28f3c201e7ad
Autor:
Zsolt Tuza, Leandro Montero, Valentin Borozan, Yannis Manoussakis, Colton Magnant, Shinya Fujita, Aydin Gerek
Publikováno v:
Discrete Mathematics
Discrete Mathematics, Elsevier, 2012, 312 (17), pp.Pages 2550-2560. ⟨10.1016/j.disc.2011.09.003⟩
Discrete Mathematics, 2012, 312 (17), pp.Pages 2550-2560. ⟨10.1016/j.disc.2011.09.003⟩
Discrete Mathematics, Elsevier, 2012, 312 (17), pp.Pages 2550-2560. ⟨10.1016/j.disc.2011.09.003⟩
Discrete Mathematics, 2012, 312 (17), pp.Pages 2550-2560. ⟨10.1016/j.disc.2011.09.003⟩
An edge-colored graph G is k-proper connected if every pair of vertices is connected by k internally pairwise vertex-disjoint proper colored paths. The k-proper connection number of a connected graph G, denoted by pck(G), is the smallest number of co