Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Valdés, Julio J."'
Autor:
Valdés, Julio J., Tchagang, Alain B.
This paper explores the internal structure of two quantum mechanics datasets (QM7b, QM9), composed of several thousands of organic molecules and described in terms of electronic properties. Understanding the structure and characteristics of this kind
Externí odkaz:
http://arxiv.org/abs/2309.15130
Accumulation of molecular data obtained from quantum mechanics (QM) theories such as density functional theory (DFTQM) make it possible for machine learning (ML) to accelerate the discovery of new molecules, drugs, and materials. Models that combine
Externí odkaz:
http://arxiv.org/abs/2004.10091
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Valdés, Julio J., Tchagang, Alain B.
Publikováno v:
Journal of Computational Chemistry; 6/5/2024, Vol. 45 Issue 15, p1193-1214, 22p
Publikováno v:
In Energy & Buildings 1 January 2018 158:43-53
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Newsham, Guy R., Xue, Henry, Arsenault, Chantal, Valdes, Julio J., Burns, Greg J., Scarlett, Elizabeth, Kruithof, Steven G., Shen, Weiming
Publikováno v:
In Energy & Buildings 15 January 2017 135:137-147
The interest in automated analysis and classification of cough sounds has increased in recent years, partly due to the worldwide COVID19 pandemic. To train such classification models, a large dataset of cough sounds is needed, however, it remains cha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1674::1af438bb9744ab7bbce06f8094b833e9
https://nrc-publications.canada.ca/eng/view/object/?id=a005d39d-8dca-473d-967b-65f0c73185e2
https://nrc-publications.canada.ca/eng/view/object/?id=a005d39d-8dca-473d-967b-65f0c73185e2
Publikováno v:
In Expert Systems With Applications 15 December 2012 39(18):13193-13201
This paper presents a data driven study of dissolved oxygen times series collected in Atlantic Canada. The main motivation of presented work was to evaluate if machine learning techniques could help to understand and anticipate hypoxic episodes in nu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1674::84cd058159ffdf01527c7792f2cc03d4
https://nrc-publications.canada.ca/eng/view/object/?id=0251a8fe-28d4-44df-95da-b03edacb5737
https://nrc-publications.canada.ca/eng/view/object/?id=0251a8fe-28d4-44df-95da-b03edacb5737