Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Valéry Mahé"'
Autor:
Aurélien Galateau, Valéry Mahé
Publikováno v:
Mathematische Zeitschrift. 285:613-629
We use Masser’s counting theorem to prove a lower bound for the canonical height in powers of elliptic curves. We also prove the Galois case of the elliptic Lehmer problem, combining Kummer theory and Masser’s result with bounds on the rank and t
Publikováno v:
Journal of the Australian Mathematical Society, 92(1), 99-126
We study the existence of primes and of primitive divisors in classical divisibility sequences defined over function fields. Under various hypotheses, we prove that Lucas sequences and elliptic divisibility sequences over function fields defined over
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ded308d5516e6e39ea3ec009c29c6361
Autor:
Valéry Mahé
We consider a particular case of an analog for elliptic curves to the Mersenne problem : finding explicitely all prime power terms in an elliptic divisibility sequence when descent via isogeny is possible. We explain how this question can be related
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2a7bf9628224efaa1008dded8b3b2175
http://arxiv.org/abs/1002.4202
http://arxiv.org/abs/1002.4202
Autor:
Graham Everest, Valéry Mahé
Publikováno v:
Experimental Mathematics
Experimental Mathematics, Taylor & Francis, 2009, 18 (1), pp.1--9. ⟨10.1080/10586458.2009.10128889⟩
Experimental Mathematics, Taylor & Francis, 2009, 18 (1), pp.1--9. ⟨10.1080/10586458.2009.10128889⟩
Consider an elliptic curve, defined over the rational numbers, and embedded in projective space. The rational points on the curve are viewed as integer vectors with coprime coordinates. What can be said about a rational point if a bound is placed upo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::156482f14a5a97af5bea1cc7f9ff0737
http://arxiv.org/abs/0803.0700
http://arxiv.org/abs/0803.0700
An elliptic divisibility sequence, generated by a point in the image of a rational isogeny, is shown to possess a uniformly bounded number of prime terms. This result applies over the rational numbers, assuming Lang's conjecture, and over the rationa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::502d9d31805895b91c8d5da2d6177670