Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Vakhtang Putkaradze"'
Publikováno v:
Brain Multiphysics, Vol 3, Iss , Pp 100050- (2022)
Our modelling of brain mechanics is based on observations of Budday and colleagues [6], who analyzed the elastic properties of human brain tissue samples under multiple loading modes. Using these data, Budday et al. determined a realistic constitutiv
Externí odkaz:
https://doaj.org/article/6bc2ffe90a184152a94061363049970f
Publikováno v:
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 102
Publikováno v:
Continuum Mechanics and Thermodynamics.
Publikováno v:
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena, Elsevier, 2021, 426, pp.132984. ⟨10.1016/j.physd.2021.132984⟩
Physica D: Nonlinear Phenomena, Elsevier, 2021, 426, pp.132984. ⟨10.1016/j.physd.2021.132984⟩
Many parts of biological organisms are comprised of deformable porous media. The biological media is both pliable enough to deform in response to an outside force and can deform by itself using the work of an embedded muscle. For example, the recent
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f67649717df7009594931e4fc2ff426b
http://arxiv.org/abs/2107.03661
http://arxiv.org/abs/2107.03661
Autor:
Meghan Rhodes, Vakhtang Putkaradze
In this work, we model the movement of a figure skater gliding on ice by the Chaplygin sleigh, a classic pedagogical example of a nonholonomic mechanical system. The Chaplygin sleigh is controlled by a movable added mass, modeling the movable center
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::049d433c3608f8c1ca9388ca90542810
Publikováno v:
Acta Mechanica
Acta Mechanica, Springer Verlag, 2020, 231 (9), pp.3897-3924. ⟨10.1007/s00707-020-02726-3⟩
Acta Mechanica, Springer Verlag, 2020, 231 (9), pp.3897-3924. ⟨10.1007/s00707-020-02726-3⟩
We derive the equations of motion for the dynamics of a porous media filled with an incompressible fluid. We use a variational approach with a Lagrangian written as the sum of terms representing the kinetic and potential energy of the elastic matrix,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::41dc6a40256bb6dc7e139fe895f096e7
https://hal.archives-ouvertes.fr/hal-03042561
https://hal.archives-ouvertes.fr/hal-03042561
Publikováno v:
Journal of Nonlinear Science
Journal of Nonlinear Science, Springer Verlag, 2019, 29 (2), pp.377-414. ⟨10.1007/s00332-018-9491-9⟩
Journal of Nonlinear Science, Springer Verlag, 2019, 29 (2), pp.377-414. ⟨10.1007/s00332-018-9491-9⟩
International audience; We present a theory for the three-dimensional evolution of tubes with expandable walls conveying fluid. Our theory can accommodate arbitrary deformations of the tube, arbitrary elasticity of the walls, and both compressible an
Autor:
Rochelle Nieuwenhuis, Vakhtang Putkaradze, Masayuki Kimura, Takashi Hikihara, Morris Flynn, Madoka Kubota
Publikováno v:
Applied Mathematical Modelling. 55:205-223
The dynamics of a fully nonlinear, tree-structured resonator and its response to a broadband forcing of the branches is examined. It is shown that the broadband forcing yields a transfer of energy between the parts of the spectrum so that the spectru
Publikováno v:
Handbook of Variational Methods for Nonlinear Geometric Data ISBN: 9783030313500
This chapter gives an introduction to the variational methods recently developed in fluid-structure interaction, by focusing on the dynamics of flexible tubes conveying fluid. This is a topic of high importance for biomedical and industrial applicati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f5b943a30dc6bbf2366659aed2c29c4d
https://doi.org/10.1007/978-3-030-31351-7_6
https://doi.org/10.1007/978-3-030-31351-7_6
Publikováno v:
Comptes Rendus. Mécanique
Comptes Rendus. Mécanique, 2016, 344, pp.769-775. ⟨10.1016/j.crme.2016.08.004⟩
Comptes Rendus. Mécanique, 2016, 344, pp.769-775. ⟨10.1016/j.crme.2016.08.004⟩
International audience; We derive a variational approach for discretizing fluid-structure interactions, with a particular focus on the dynamics of fluid-conveying elastic tubes. Our method is based on a discretization of the fluid's back-to-labels ma