Zobrazeno 1 - 10
of 144
pro vyhledávání: '"Vagif S. Guliyev"'
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-17 (2024)
Abstract With b belonging to a new B M O θ ( ρ ) $BMO_{\theta}(\rho )$ space, L = − △ + V $L=-\triangle +V$ is a Schrödinger operator on R n ${\mathbb{R}^{n}}$ with nonnegative potential V belonging to the reverse Hölder class R H n / 2 $RH_{
Externí odkaz:
https://doaj.org/article/e1655498256f41219b760091f7648106
Publikováno v:
Advances in Difference Equations, Vol 2018, Iss 1, Pp 1-14 (2018)
Abstract Let L=−ΔHn+V $L=-\Delta_{\mathbb{H}_{n}}+V$ be a Schrödinger operator on the Heisenberg group Hn $\mathbb{H}_{n}$, where the nonnegative potential V belongs to the reverse Hölder class RHq1 $RH_{q_{1}}$ for some q1≥Q/2 $q_{1} \ge Q/2$
Externí odkaz:
https://doaj.org/article/a56079c5bf994917839ad027eed7b2b5
Publikováno v:
Electronic Journal of Differential Equations, Vol 2018, Iss 110,, Pp 1-24 (2018)
We show continuity in generalized Orlicz-Morrey spaces $M_{\Phi,\varphi}(\mathbb{R}^n)$ of sublinear integral operators generated by Calderon-Zygmund operator and their commutators with BMO functions. The obtained estimates are used to study globa
Externí odkaz:
https://doaj.org/article/1f5908ab2f5c4ccaa4dca2adb207105f
Autor:
Vagif S. Guliyev, Ali Akbulut
Publikováno v:
Boundary Value Problems, Vol 2018, Iss 1, Pp 1-14 (2018)
Abstract Let L=−Δ+V $L=-\Delta+V$ be a Schrödinger operator on Rn $\mathbb{R}^{n}$, where n≥3 $n\ge3$ and the nonnegative potential V belongs to the reverse Hölder class RHq1 $RH_{q_{1}}$ for some q1>n/2 $q_{1} > n/2$. Let b belong to a new Ca
Externí odkaz:
https://doaj.org/article/ddb37b05af7d4c67876cf818f01e4e7e
Autor:
Vagif S. Guliyev
Publikováno v:
Journal of Function Spaces and Applications, Vol 7, Iss 1, Pp 43-59 (2009)
In this paper, we present some sufficient conditions for the boundedness of convolution operators that their kernel satisfies a certain version of Hörmander's condition, in the weighted Lebesgue spaces Lp,ω (ℝn).
Externí odkaz:
https://doaj.org/article/0c3820e7c206496ebf8fd40c358d78e2
Autor:
Vagif S. Guliyev, Farida Ch. Alizadeh
Publikováno v:
Journal of Function Spaces, Vol 2014 (2014)
The boundedness of multilinear commutators of Calderón-Zygmund operator Tb→ on generalized weighted Morrey spaces Mp,φ(w) with the weight function w belonging to Muckenhoupt's class Ap is studied. When 1
Externí odkaz:
https://doaj.org/article/9ebc2ca993c64c89a12c8e64b1bf3977
Autor:
Vagif S. Guliyev, Fatih Deringoz
Publikováno v:
Journal of Function Spaces, Vol 2014 (2014)
We consider generalized Orlicz-Morrey spaces MΦ,φ(ℝn) including their weak versions WMΦ,φ(ℝn). In these spaces we prove the boundedness of the Riesz potential from MΦ,φ1(ℝn) to MΨ,φ2(ℝn) and from MΦ,φ1(ℝn) to WMΨ,φ2(ℝn). As ap
Externí odkaz:
https://doaj.org/article/55f80b13603a4ac8a42d0533b7be5cff
Autor:
Vagif S. Guliyev, Kamala R. Rahimova
Publikováno v:
Journal of Function Spaces and Applications, Vol 2012 (2012)
We prove that the parabolic fractional maximal operator MαP, 0≤α
Externí odkaz:
https://doaj.org/article/6b864d76ea6e482c9d2f22326920d48a
Publikováno v:
Abstract and Applied Analysis, Vol 2011 (2011)
The authors study the boundedness for a large class of sublinear operator T generated by Calderón-Zygmund operator on generalized Morrey spaces Mp,φ. As an application of this result, the boundedness of the commutator of sublinear operators Ta on g
Externí odkaz:
https://doaj.org/article/38e2496b2672466d912f3f3006537a92
Autor:
Vagif S. Guliyev
Publikováno v:
Journal of Inequalities and Applications, Vol 2009 (2009)
We consider generalized Morrey spaces ℳp,ω(ℝn) with a general function ω(x,r) defining the Morrey-type norm. We find the conditions on the pair (ω1,ω2) which ensures the boundedness of the maximal operator and Calderón-Zygmund singular integ
Externí odkaz:
https://doaj.org/article/9fc6bc2502344c17bec535c74dc5f227