Zobrazeno 1 - 10
of 44
pro vyhledávání: '"VU-DINH MINH"'
Most microscopic pedestrian navigation models use the concept of "forces" applied to the pedestrian agents to replicate the navigation environment. While the approach could provide believable results in regular situations, it does not always resemble
Externí odkaz:
http://arxiv.org/abs/1912.02945
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tran, Thi Ngan1 ngantt@tlu.edu.vn, nganictu@gmail.com, Vu, Dinh Minh2, Tran, Manh Tuan1, Le, Ba Dung3
Publikováno v:
Arabian Journal for Science & Engineering (Springer Science & Business Media B.V. ). Apr2019, Vol. 44 Issue 4, p2933-2944. 12p.
Publikováno v:
PROCEEDINGS OF THE 14TH NATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED INFORMATION TECHNOLOGY RESEARCH.
Publikováno v:
2021 15th International Conference on Advanced Computing and Applications (ACOMP).
Autor:
Masaomi Kimura, Vu-Dinh Minh
Publikováno v:
International Journal of Computer Theory and Engineering. 10:180-184
Publikováno v:
Frontiers in Intelligent Computing: Theory and Applications ISBN: 9789813291850
In the current trend, people pay attention to healthcare services more and more. Liver-related diseases, same as other common diseases, have many effects on human health. Herein, we introduce a novel model to liver disease diagnosis problem based on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::110ae4503d1a5addb684e929c255e7ea
https://doi.org/10.1007/978-981-32-9186-7_3
https://doi.org/10.1007/978-981-32-9186-7_3
Publikováno v:
ACM International Conference Proceeding Series; 6/22/2020, p88-92, 5p
Publikováno v:
ACM International Conference Proceeding Series; 3/19/2020, p115-120, 6p
Publikováno v:
Advances in Engineering Research and Application ISBN: 9783030047917
This paper proposes an improved fuzzy min-max neural network for data clustering. The proposed model incorporates both unsupervised and semi-supervised methods during training. The studies and experiments are limited to the extent of data clustering
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4eaf6d57406cb0d632256f28b417f9b3
https://doi.org/10.1007/978-3-030-04792-4_47
https://doi.org/10.1007/978-3-030-04792-4_47