Zobrazeno 1 - 10
of 23
pro vyhledávání: '"VEENA NARAYANAN"'
Publikováno v:
Mathematics, Vol 10, Iss 17, p 3136 (2022)
The Diophantine equation is a strong research domain in number theory with extensive cryptography applications. The goal of this paper is to describe certain geometric properties of positive integral solutions of the quadratic Diophantine equation x1
Externí odkaz:
https://doaj.org/article/b09798bbcc1d450c892e79aff0c44363
Autor:
Srikanth Raghavendran, Veena Narayanan
Publikováno v:
Mathematics, Vol 8, Iss 10, p 1775 (2020)
The present study aims to develop novel parametric solutions for the Prouhet Tarry Escott problem of second degree with sizes 3, 4 and 5. During this investigation, new parametric representations for integers as the sum of three, four and five perfec
Externí odkaz:
https://doaj.org/article/63f03d12bbb049888560caa352892410
Autor:
Srikanth Raghavendran, Veena Narayanan
Publikováno v:
Mathematics, Vol 7, Iss 3, p 227 (2019)
This paper presents a review of the Prouhet Tarry Escott problem. The solutions of the Prouhet Tarry Escott problem are significant because of its numerous applications. Available literature about the present topic has been critically examined. The i
Externí odkaz:
https://doaj.org/article/0bd197a628c34c17a53a484b9eb25d45
Autor:
Abirami, K. M.1 (AUTHOR), Veena, Narayanan1 (AUTHOR) veenanarayanan@maths.sastra.ac.in, Srikanth, R.1 (AUTHOR), Dhanasekaran, P.1 (AUTHOR), Chen, Shih Pin1 (AUTHOR)
Publikováno v:
International Journal of Mathematics & Mathematical Sciences. 7/30/2024, Vol. 2024, p1-16. 16p.
Autor:
Veena Narayanan, G. Abhilash
Publikováno v:
Circuits, Systems, and Signal Processing. 42:2941-2958
Publikováno v:
Lecture Notes in Mechanical Engineering ISBN: 9789811905605
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::55b1bc4083393118f612b01a014a25b0
https://doi.org/10.1007/978-981-19-0561-2_14
https://doi.org/10.1007/978-981-19-0561-2_14
Autor:
Veena Narayanan, G Abhilash
Publikováno v:
2022 IEEE Region 10 Symposium (TENSYMP).
Publikováno v:
Proceedings of Data Analytics and Management ISBN: 9789811662881
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ad8b1cbfc345909c45f4a0e62ccafefc
https://doi.org/10.1007/978-981-16-6289-8_3
https://doi.org/10.1007/978-981-16-6289-8_3
Autor:
Veena Narayanan, G Abhilash
Publikováno v:
2021 Advanced Communication Technologies and Signal Processing (ACTS).
Publikováno v:
International Journal of Innovative Technology and Exploring Engineering. 9:1665-1669
In this article, we prove that the non-linear Diophantine equation = 2 1 2 … + 1; ≥ 2, ∈ − {2}, ′ are distinct and P is the set of all prime numbers has an infinite number of solutions using the notion of a periodic sequence. Then we also o