Zobrazeno 1 - 10
of 238
pro vyhledávání: '"VAN DUONG DINH"'
Autor:
Van Duong, Dinh, Dao, Tuan Anh
In this paper, our main goal is to achieve the high-order asymptotic expansion of solutions to $\sigma$-evolution equations with different damping types in the $L^2$ framework. Throughout this, we observe the influence of parabolic like models corres
Externí odkaz:
http://arxiv.org/abs/2409.04287
In this paper, we would like to consider the Cauchy problem for a weakly coupled system of semi linear $sigma$ evolution equations with different damping mechanisms for any $\sigma>1$, parabolic like damping and $\sigma$ evolution like damping. Motiv
Externí odkaz:
http://arxiv.org/abs/2406.00450
Autor:
Van Duong, Dinh, Dao, Tuan Anh
In this paper, we would like to study the linear Cauchy problems for semi-linear $\sigma$-evolution models with mixing a parabolic like damping term corresponding to $\sigma_1 \in [0,\sigma/2)$ and a $\sigma$-evolution like damping corresponding to $
Externí odkaz:
http://arxiv.org/abs/2311.09085
In this paper, we would like to consider the Cauchy problem for semi-linear $\sigma$-evolution equations with double structural damping for any $\sigma\ge 1$. The main purpose of the present work is to not only study the asymptotic profiles of soluti
Externí odkaz:
http://arxiv.org/abs/2311.06660
Publikováno v:
SIAM Journal on Mathematical Analysis; 2024, Vol. 56 Issue 3, p3110-3143, 34p
Publikováno v:
Communications in Partial Differential Equations. 46:2134-2170
We study the asymptotic dynamics for solutions to a system of nonlinear Schr\"odinger equations with cubic interactions, arising in nonlinear optics. We provide sharp threshold criteria leading to global well-posedness and scattering of solutions, as
Autor:
Van Duong Dinh
Publikováno v:
Journal of Hyperbolic Differential Equations. 18:1-28
We consider a class of [Formula: see text]-supercritical inhomogeneous nonlinear Schrödinger equations in two dimensions [Formula: see text] where [Formula: see text] and [Formula: see text]. Using a new approach of Arora et al. [Scattering below th
Autor:
Van Duong Dinh
Publikováno v:
Mathematische Nachrichten. 294:672-716
We consider a class of L2‐supercritical inhomogeneous nonlinear Schrodinger equations with potential in three dimensions. In the focusing case, using a recent method of Dodson and Murphy, we first study the energy scattering below the ground state
Autor:
Van Duong Dinh
Publikováno v:
Nonlinearity. 34:776-821
Autor:
Van Duong Dinh
Publikováno v:
Communications on Pure & Applied Analysis. 20:651-680
We consider the cubic nonlinear fourth-order Schrodinger equation \begin{document}$ i \partial_t u - \Delta^2 u + \mu \Delta u = \pm |u|^2 u, \quad \mu \geq 0 $\end{document} on \begin{document}$ \mathbb R^N, N\geq 5 $\end{document} with random initi