Zobrazeno 1 - 10
of 134
pro vyhledávání: '"V.A. Vladimirov"'
Autor:
V.A. Vladimirov, Kronotsky State Nature Biosphere Reserve, Elizovo, Russia, A.V. Bobkov, Vladimir V. Vertyankin
Publikováno v:
Marine Mammals of the Holarctic. Collection of Scientific Papers. 2019. Vol. 1. Морские млекопитающие Голарктики. Сборник научных трудов. 2019. Т. 1..
Publikováno v:
Marine Mammals of the Holarctic. Collection of Scientific Papers. 2019. Vol. 1. Морские млекопитающие Голарктики. Сборник научных трудов. 2019. Т. 1..
Autor:
V.A. Vladimirov, Cz. Ma¸czka
Publikováno v:
Chaos, Solitons & Fractals. 44:677-684
Stability of a set of traveling wave solutions to the convection–reaction–diffusion equation taking into account the effects of memory is studied by means of the qualitative methods and numerical simulation.
Autor:
V.A. Vladimirov, C. Mączka
Publikováno v:
Reports on Mathematical Physics. 60:317-328
We present new analytical solutions to the hyperbolic generalization of Burgers equation, describing interaction of the wave fronts. To obtain them, we employ a modified version of the Hirota method.
Autor:
S.I. Skurativsky, V.A. Vladimirov
Publikováno v:
Reports on Mathematical Physics. 46:287-294
A set of invariant (travelling wave) solutions of a modelling system describing strong pulse loading afteraction in medium with internal structure is considered. Using the well known symmetry reduction method we perform the transition from the initia
Publikováno v:
Scopus-Elsevier
This work deals with a system of balance equation for mass and momentum closed by the dynamic equation of state, taking into account relaxation and spatial nonlocality. The system is shown to possess periodic, quasiperiodic and stochastic autowave so
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
V.A. Vladimirov, Cz. Mączka
A set of traveling wave solution to convection-reaction-diffusion equation is studied by means of methods of local nonlinear analysis and numerical simulation. It is shown the existence of compactly supported solutions as well as solitary waves withi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51186c561e54d2cf57dd9dbf166797a1
Autor:
V.A. Vladimirov, V.V. Rumyantsev
Publikováno v:
Journal of Applied Mathematics and Mechanics. 54:154-163
The stability of the state of equilibrium of a rigid body with a cavity partly or completely filled with a viscous incompressible liquid possessing surface tension is cosidered in a linear form. Lyapunov's direct method is used to show that the syste
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.