Zobrazeno 1 - 6
of 6
pro vyhledávání: '"V. V. Manako"'
Autor:
V. V. Manako
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 2(27), Pp 115-123 (2012)
We have considered an analytical expression for the temperature field of a semi-infinite body that is heated by a circular heat source located at the free surface. Unsteady temperature field is expressed in terms of the Appell and the Srivastava hype
Externí odkaz:
https://doaj.org/article/740469a651b349a0832797f543c33101
Autor:
V. V. Manako, V. A. Putilin
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 1(18), Pp 206-213 (2009)
The task solution for heating semi-infinity detail by moving laser beam as integral is considered. Its analytical calculation is carried out.
Externí odkaz:
https://doaj.org/article/eee004bcb47a4bb98ba9f46781f05747
Autor:
V. A. Putilin, V. V. Manako
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 2(17), Pp 224-230 (2008)
Heating of a surface by moving laser beam is studied. Proposed solution is represented with the generalized hypergeometric function. With the help of this representationthe temperature in the center of a moving beam is determined.
Externí odkaz:
https://doaj.org/article/90b87ead417a4078ace3823cb8b856e0
Autor:
A. P. Zahnitko, V. V. Manako, L. M. Tomilenko, L. L. Shevchenko, H. V. Karnaukh, N. M. Zaika, H. M. Yarun, M. Yu. Kryhin, K. M. Yakymenko, L. V. Olifirenko, M. V. Nadutenko, O.H. Rabulets, L. M. Kudriavkina, N. V. Shcherbakova, Yu. V. Leontiev, V. A. Shyrokov, I. M. Kondrachuk, I. V. Ostapova, I. V. Shevchenko, V. V. Syvokozova, L. O. Symonenko, V. V. Chumak
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::20d122636657fffcc0a3649f0ed20bae
https://doi.org/10.33190/978-966-02-8683-2/8686-3
https://doi.org/10.33190/978-966-02-8683-2/8686-3
Autor:
V. V. Manako
Publikováno v:
Integral Transforms and Special Functions. 23:503-508
The Humbert confluent hypergeometric functions Φ2, Φ3 and Ψ2 are considered. The connection Φ3 with the function Ψ2 is established. Representations for functions Φ3, Ψ2 as series with the Gauss function 2 F 1 are proposed. Some special values
Publikováno v:
High Temperature. 49:127-134
We present a concept of solving the problem of heating a semibounded space by an immobile source with Gaussian power distribution via the hypergeometrical function of two variables. The kinetics of thermal saturation is analyzed under heating by an i