Zobrazeno 1 - 10
of 13
pro vyhledávání: '"V. V. Chepyzhov"'
Publikováno v:
Russian Journal of Mathematical Physics. 16:208-227
We study a reaction-diffusion system of N equations with k nonzero and N − k zero diffusion coefficients. More exactly, the first k equations of the system contain the terms a i Δu i − f j (u, v), i = 1, …, k, with the diffusion coefficient a
Publikováno v:
Journal of Dynamics and Differential Equations. 19:655-684
We study the global attractor $$\mathcal{A}^{\varepsilon}$$ of the non-autonomous 2D Navier–Stokes (N.–S.) system with singularly oscillating external force of the form $$g_{0}(x,t)+\frac{1} {\varepsilon^{\rho }} g_{1} (\frac{x} {\varepsilon}, t)
Publikováno v:
Mathematical Notes. 79:483-504
We study a uniform attractor $$\mathcal{A}^\varepsilon $$ for a dissipative wave equation in a bounded domain Ω ⋐ ℝn under the assumption that the external force singularly oscillates in time; more precisely, it is of the form g 0(x, t)+ e−α
Autor:
V. V. Chepyzhov, Alain Miranville
Publikováno v:
Communications on Pure & Applied Analysis. 4:115-142
We consider in this article a general construction of trajectory attractors and global attractors of evolution equations with memory. In our approach, the corresponding dynamical system acts in the space of initial data of the Cauchy problem under st
Publikováno v:
Problems of Information Transmission. 39:2-20
We study the Kolmogorov e-entropy and the fractal dimension of global attractors for autonomous and nonautonomous equations of mathematical physics. We prove upper estimates for the e-entropy and fractal dimension of the global attractors of nonlinea
Publikováno v:
ESAIM: Control, Optimisation and Calculus of Variations. 8:467-487
We study the global attractor of the non-autonomous 2D Navier–Stokes system with time-dependent external force g(x,t) . We assume that g(x,t) is a translation compact function and the corresponding Grashof number is small. Then the global attractor
Autor:
V. V. Chepyzhov, M. A. Efendiev
Publikováno v:
Communications on Pure and Applied Mathematics. 53:647-665
The subject of this paper is the asymptotic behavior of a class of nonautonomous, infinite-dimensional dynamical systems with an underlying unbounded domain. We present an approach that is able to overcome both the law of compactness of the trajector
Publikováno v:
Mathematical Notes. 51:622-624
Publikováno v:
Nonlinearity; Feb2009, Vol. 22 Issue 2, p351-370, 20p
Autor:
M. I. Vishik, V. V. Chepyzhov
Publikováno v:
Problems of Information Transmission; Jan2003, Vol. 39 Issue 1, p2-20, 19p