Zobrazeno 1 - 10
of 19
pro vyhledávání: '"V. S. Romanyuk"'
Autor:
N. V. Parfinovych, A.M. Pasko, A. M. Samoilenko, O. V. Davydov, V. S. Romanyuk, A. S. Romanyuk, S. B. Vakarchuk, O. О. Shumeiko, V.O. Kofanov, I. O. Shevchuk, V. L. Velykin, V. F. Babenko, R. M. Trigub, A. S. Serdyuk
Publikováno v:
Ukrains’kyi Matematychnyi Zhurnal. 72:1006-1110
Autor:
A. S. Romanyuk, V. S. Romanyuk
Publikováno v:
Ukrainian Mathematical Journal. 71:1257-1272
We establish the exact-order estimates for some approximating characteristics of the classes $$ {\mathbbm{W}}_{p,\alpha}^r $$ and $$ {\mathbbm{B}}_{p,\theta}^r $$ of periodic functions of one and many variables in the norm of the space B∞,1.
Autor:
V. S. Romanyuk, A. S. Romanyuk
Publikováno v:
Ukrainian Mathematical Journal. 71:308-321
We obtain the exact-order estimates of the Kolmogorov widths and entropy numbers for the classes $$ {\mathbbm{W}}_{p,\alpha}^r $$ and $$ {\mathbbm{B}}_{p,\theta}^r $$ in the norm of the space B∞,1.
Publikováno v:
IOP Conference Series: Earth and Environmental Science. 1061:012044
The relevance of the chosen topic is due to the need to solve environmental problems that arise when drilling oil and gas wells. The study is aimed at the disposal, neutralization and reuse of drilling waste, which will create a reserve of competitiv
Autor:
V. S. Romanyuk
Publikováno v:
Ukrainian Mathematical Journal. 69:796-810
We establish the exact-order estimates of the Kolmogorov widths and entropy numbers for unit balls from the binary Besov spaces dyad $$ {B}_{p,\theta}^{0,\gamma } $$ compactly embedded in the exponential Orlicz spaces exp Lν equipped with the Luxemb
Autor:
V. S. Romanyuk
Publikováno v:
Ukrainian Mathematical Journal. 68:928-939
Autor:
V. S. Romanyuk
Publikováno v:
Ukrainian Mathematical Journal. 68:625-637
We describe the isotropic Besov spaces of functions of several variables in the terms of conditions imposed on the Fourier–Haar coefficients.
Autor:
V. S. Romanyuk
Publikováno v:
Ukrainian Mathematical Journal. 67:1411-1424
In the Lebesgue spaces L p ([0, 1] d ), 1 ≤ p ≤ ∞, for d ≥ 2, we define a multiple basis system of functions H d = (h n ) = 1 ∞ . This system has the main properties of the well-known one-dimensional Haar basis H. In particular, it is shown
Constructive Characteristic of ho¨ Lder Classes and M-Term Approximations in the Multiple Haar Basis
Autor:
V. S. Romanyuk
Publikováno v:
Ukrainian Mathematical Journal. 66:391-403
In terms of the best polynomial approximations in the multiple Haar basis, we obtain a constructive characteristic of the Holder classes H of functions defined on the unit cube $$ \mathbb{I} $$ d of the space ℝ d under the restriction $$ 0
Autor:
V. S. Romanyuk, A. S. Romanyuk
Publikováno v:
Ukrainian Mathematical Journal. 65:1862-1882
We obtain upper bounds for the values of the best bilinear approximations in the Lebesgue spaces of periodic functions of many variables from the Besov-type classes. In special cases, it is shown that these bounds are order exact.