Zobrazeno 1 - 10
of 16
pro vyhledávání: '"V. S. Mokeichev"'
Autor:
V. S. Mokeichev, A. M. Sidorov
Publikováno v:
Учёные записки Казанского университета. Серия Физико-математические науки, Vol 165, Iss 1, Pp 68-81 (2023)
In our previous articles, we introduced and explored the notion of φB -distributions with values in the Banach space. This offers a new perspective on the theory of solvability of linear problems, which is important for solving partial differential
Externí odkaz:
https://doaj.org/article/12b9067574f74c84a0ddd64108492ed5
Publikováno v:
Учёные записки Казанского университета. Серия Физико-математические науки, Vol 165, Iss 2 (2024)
Necessary and sufficient conditions for the existence of a valid Dirichlet solution were obtained. A method was developed to find Dirichlet solutions of the functional differential equation with non-delayed linear argument deviation.
Externí odkaz:
https://doaj.org/article/dbff03c343704a52949fba2549288987
Autor:
V. S. Mokeichev
Publikováno v:
Russian Mathematics. 62:55-60
We introduce φ-distributions and prove that their set is ametric space. We also consider a Banach space and a Hilbert space of such distributions. The results are applied to differential equations with Laurent’s type coefficients.
Autor:
V. S. Mokeichev
Publikováno v:
Russian Mathematics. 61:25-34
We present conditions that allow us to prove the existence of eigenvalues and characteristic values for operator F(D) − C(λ): L2(Rm) → L2(Rm), where F(D) is a pseudo-differential operator with a symbol F(iξ) and C(λ): L2(Rm) → L2(Rm) is a li
Autor:
A. V. Golovtsov, V. S. Mokeichev
Publikováno v:
Differential Equations. 50:633-642
Under the assumption that the variables in the wave equation can be separated and its coefficients are periodic, we develop a classification of seismic eigenwaves and use it to answer some questions as to how to specify the type and basic parameters
Autor:
V. S. Mokeichev
Publikováno v:
Russian Mathematics. 54:38-43
A periodic problem for a linear differential equation of the second order is reduced to a periodic problem for a differential equation of the first order, but with deviation argument. We indicate the cases when the characteristic numbers are determin
Autor:
V. S. Mokeichev
Publikováno v:
Russian Mathematics. 52:37-48
In this paper we continue the study described earlier in No. 5, 2006, of Russian Mathematics (Izv. Vyssh. Uchebn. Zaved., Matematika). We establish conditions, providing the asymptotics mentioned in the cited paper. We prove the basis property of eig
Autor:
V. S. Mokeichev
Publikováno v:
Journal of Mathematical Sciences. 74:1348-1356
Autor:
V. S. Mokeichev
Publikováno v:
Journal of Mathematical Sciences. 74:1255-1259
Autor:
V. S. Mokeichev
Publikováno v:
Journal of Soviet Mathematics. 50:1820-1828