Zobrazeno 1 - 7
of 7
pro vyhledávání: '"V. P. Gribkova"'
Autor:
V. P. Gribkova, S. M. Kozlov
Publikováno v:
Наука и техника, Vol 0, Iss 6, Pp 17-26 (2014)
The paper offers a new method for approximate solution of one type of singular integral equations for elasticity theory which have been studied by other authors. The approximate solution is found in the form of asymptotic polynomial function of a low
Externí odkaz:
https://doaj.org/article/41d89f14a86a456db2fd65df429980b6
Autor:
V. P. Gribkova, S. M. Kozlov
Publikováno v:
Наука и техника, Vol 0, Iss 4, Pp 77-82 (2013)
The paper proposes a new method for approximate solution of singular integral equations with the Cauchy-type kernel which are taken along the real axis segment. Integration function can be represented as an asymptotic polynomial or infinite series us
Externí odkaz:
https://doaj.org/article/cbe24803e96a408484463b2f997e3001
Autor:
V. P. Gribkova, S. M. Kozlov
Publikováno v:
Наука и техника, Vol 0, Iss 5, Pp 78-86 (2012)
The method for asymptotic polynomials has been applied to an equation in wing theory which is described with the help of a singular integro-differential equation. An approximate solution is based on the use of the Chebyshev polynomials of the second
Externí odkaz:
https://doaj.org/article/caa35871aa1b4296807994066eee7d8e
Autor:
V. P. Gribkova, S. M. Kozlov
Publikováno v:
Differential Equations. 49:1150-1159
We suggest a new method for solving a singular equation of elasticity theory, which is based on the use of asymptotic polynomials constructed on the basis of Chebyshev polynomials of the second kind. Under certain conditions imposed on the functions
Autor:
S. M. Kozlov, V. P. Gribkova
Publikováno v:
Differential Equations. 48:264-274
We consider an approximate solution of differential equations with initial and boundary conditions. To find a solution, we use asymptotic polynomials Qnf(x) of the first kind based on Chebyshev polynomials Tn(x) of the first kind and asymptotic polyn
Autor:
V. M. Legkii, A. S. Makarov, G. V. Kobylyanskii, P. E. Khizhnyak, A. N. Lutkov, B. K. Dymov, V. N. Mikhailov, M. M. Revyako, D. D. Talin, V. V. Tereshatov, N. M. Tsirel'man, A. T. Chub, V. M. Zakopailo, A. A. Kandaurov, A. K. Gallyamov, T. M. Mubarakov, V. V. Kulikov, A. F. Kravtsov, N. V. Pal'tsun, B. M. Prokof'ev, V. F. Dunskii, N. V. Nikitin, G. A. Shul'ginova, V. P. Gribkova, L. V. Novosel'skaya, I. M. Plekhov, E. K. Iordanishvili, B. E. -Sh. Malkovich, V. V. Vakhromeeva, S. I. Tikhonova, I. S. Reshetnyak, I. N. Manusov, Yu. A. Mel'nikov, I. M. Dolgova
Publikováno v:
Soviet Physics Journal. 18:746-752
Publikováno v:
Journal of engineering physics. 22:699-704
It is shown that the rates of heat and mass transfer processes in this system are higher than in a “frozen” mixture.