Zobrazeno 1 - 10
of 55
pro vyhledávání: '"V. N. Tolstoy"'
Autor:
V. N. Tolstoy
Publikováno v:
European Physical Journal C: Particles and Fields, Vol 83, Iss 3, Pp 1-17 (2023)
Abstract By the supersymmetrization of a simple algebraic technique proposed in Lukierski and Tolstoy (Eur Phys J C 77:226, 2017) we obtain the complete classification of all basic (nonisomorphic) quantum deformations for the orthosymplectic Lie supe
Externí odkaz:
https://doaj.org/article/586aa690db384fadb23818dbb75f5eb3
Autor:
J. Lukierski, V. N. Tolstoy
Publikováno v:
European Physical Journal C: Particles and Fields, Vol 77, Iss 4, Pp 1-12 (2017)
Abstract Using the isomorphism $${\mathfrak {o}}(3;{\mathbb {C}})\simeq {\mathfrak {sl}}(2;{\mathbb {C}})$$ o ( 3 ; C ) ≃ sl ( 2 ; C ) we develop a new simple algebraic technique for complete classification of quantum deformations (the classical
Externí odkaz:
https://doaj.org/article/e306b78b57c74630b6a2415072319623
Publikováno v:
Physics Letters B. 754:176-181
We employ new calculational technique and present complete list of classical r-matrices for D = 4 complex homogeneous orthogonal Lie algebra o ( 4 ; C ) , the rotational symmetry of four-dimensional complex space–time. Further applying reality cond
Autor:
V. N. Tolstoy, Jerzy Lukierski
Publikováno v:
European Physical Journal C: Particles and Fields, Vol 77, Iss 4, Pp 1-12 (2017)
European Physical Journal
European Physical Journal
Using the isomorphism $${\mathfrak {o}}(3;{\mathbb {C}})\simeq {\mathfrak {sl}}(2;{\mathbb {C}})$$ o ( 3 ; C ) ≃ sl ( 2 ; C ) we develop a new simple algebraic technique for complete classification of quantum deformations (the classical r-matrice
We construct firstly the complete list of five quantum deformations of $D=4$ complex homogeneous orthogonal Lie algebra $\mathfrak{o}(4;\mathbb{C})\cong \mathfrak{o}(3;\mathbb{C})\oplus \mathfrak{o}(3;\mathbb{C})$, describing quantum rotational symme
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7f985a8b50371d2b39fbae179df4c7fa
Autor:
V. N. Tolstoy
Equivalence between algebraic structures generated by parastatisticstriple relations of Green (1953) and Greenberg -- Messiah (1965), and certain orthosymplectic $\mathbb{Z}_2\times \mathbb{Z}_2$-graded Lie superalgebras is found explicitly. Moreover
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8abab0a0deedcffea0069c7d979247b0
http://arxiv.org/abs/1610.01628
http://arxiv.org/abs/1610.01628
Publikováno v:
The European Physical Journal C. 57:601-611
This paper together with the previous one (Borowiec, Eur. Phys. J. C 48:633, 2006) presents a detailed description of all quantum deformations of the D=4 Lorentz algebra as a Hopf algebra in terms of complex and real generators. We describe here in d
Publikováno v:
The European Physical Journal C. 48:633-639
We describe in detail two-parameter nonstandard quantum deformation of D=4 Lorentz algebra $\mathfrak{o}(3,1)$, linked with Jordanian deformation of $\mathfrak{sl} (2;\mathbb{C})$. Using twist quantization technique we obtain the explicit formulae fo
Autor:
V. N. Tolstoy
Publikováno v:
Physics of Atomic Nuclei. 69:1058-1084
Basic elements of the formalism of the theory that is based on the representations of the SU(3) group for the case of its reduction to the SO(3) subgroup of orbital angular momentum and which is widely used in theoretical physics is presented in a sy
Publikováno v:
The European Physical Journal C. 44:139-145
We consider a superextension of the extended Jordanian twist, describing nonstandard quantization of anti-de-Sitter ($AdS$) superalgebra $osp(1|4)$ in the form of Hopf superalgebra. The super-Jordanian twisting function and corresponding basic coprod