Zobrazeno 1 - 10
of 21
pro vyhledávání: '"V. N. Maslennikova"'
Autor:
R. A. Aleksandrjan, V. M. Babič, Ju. M. Berezanskiĭ, O. V. Besov, A. V. Bicadze, A. A. Dezin, S. K. Godunov, V. A. Il′in, V. P. Il′in, V. K. Ivanov, N. N. Janenko, I. A. Kiprijanov, M. I. Ključančev, V. I. Kondrašov, A. G. Kostjučenko, M. A. Krasnosel′skiĭ, L. D. Kudrjavcev, B. M. Levitan, M. M. Lavrent′ev, P. I. Lizorkin, V. N. Maslennikova, P. O. Mihaĭlov, S. G. Mihlin, A. D. Myškis, S. M. Nikol′skiĭ, V. V. Ogneva, O. A. Oleĭnik, G. P. Prokopov, A. A. Samarskiĭ, A. N. Tihonov, M. I. Višik, T. I. Zelenja
Publikováno v:
Mathematical Notes. 66:421-430
In the paper we study a binding boundary value problem for two media for Poisson's equation μΔu=f(x) with solutions in the class\(L_p^2 (\mathbb{R}_ \pm ^3 )\), 1 0, \hfill \\ \mu - ,x_3< 0. \hfill \\ \end{gathered} \right.$$ It is proved that the
Autor:
Yu S Vereshchagina, V N Maslennikova
Publikováno v:
Matematicheskie Zametki. 66:515-526
Autor:
V. N. Maslennikova, M. E. Bogovskii
Publikováno v:
Acta Applicandae Mathematicae. 37:99-107
An initial boundary-value problem for the nonlinear system of Navier-Stokes equations with timedependent discontinuity in the type of boundary conditions is proposed to describe the dynamics of a hurricane over solid ground. The tools for the solutio
Autor:
V. N. Maslennikova, M. A. Timoshin
Publikováno v:
Siberian Mathematical Journal. 35:123-149
Autor:
V. N. Maslennikova, M. E. Bogovskii
Publikováno v:
ANNALI DELL UNIVERSITA DI FERRARA. 39:65-75
Let $$\Gamma _\alpha $$ a plane angle of opening α∈(π, 2π). LetP D andP N the Dirichlet and Neumann problems associated to the Poisson equation in $$\Gamma _\alpha $$ . ForP D andP N it is proved non existence of solution in L p ( $$\Gamma _\alp
Autor:
A. I. Ginnatullin, V. N. Maslennikova
Publikováno v:
Mathematical Notes. 51:374-379
Autor:
M. E. Bogovskii, V. N. Maslennikova
Publikováno v:
Navier—Stokes Equations and Related Nonlinear Problems ISBN: 9781489914170
The maximum principle is established for classical and generalized solution ρ (x, t) for the problem $$ \frac{{\partial \rho }}{{\partial t}} + div\left( {\rho v} \right) = 0,\quad x \in \Omega \subset {{R}^{n}},t > 0 $$ (1) $$ \rho \left( {x,t} \ri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::04116ae5029fa14e7f4dac494c39ecb4
https://doi.org/10.1007/978-1-4899-1415-6_13
https://doi.org/10.1007/978-1-4899-1415-6_13
Autor:
V. N. Maslennikova, M. E. Bogovskii
Publikováno v:
Siberian Mathematical Journal. 24:768-787
In order to formulate the approximation problem for potential vector fields, we introduce some notations. By Gp(~) we shall denote the closure in Lp(~) of the subspace consisto ing of the restrictions to ~ of the vector fields from G~(R~)----{v(x):v(
Autor:
A. A. Dezin, V. N. Maslennikova
Publikováno v:
Partial Differential Equations. :117-138