Zobrazeno 1 - 10
of 40
pro vyhledávání: '"V. N. Domingos Cavalcanti"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 1998, Iss 08, Pp 1-21 (1998)
In this article, we study the hyperbolic problem $$ K(x,t)u_{tt} - sum_{j=1}^nleft(a(x,t)u_{x_j} ight) + F(x,t,u,abla u) = 0 $$ coupled with boundary conditions $$u=0,quadhbox{on }Gamma_1,, quad {partial u overpartialu} + Beta(x)u_t =0quadhbox{ on }G
Externí odkaz:
https://doaj.org/article/a8b8197cf0c7426088db7cff3d9d8a62
Publikováno v:
The Journal of Geometric Analysis. 33
Publikováno v:
Applied Mathematics & Optimization. 87
Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type
Publikováno v:
Journal of Differential Equations. 290:197-222
In this paper, motivated by recent papers on the stabilization of evolution problems with nonlocal degenerate damping terms, we address an extensible beam model with degenerate nonlocal damping of Balakrishnan-Taylor type. We discuss initially on the
Autor:
André Vicente, V. N. Domingos Cavalcanti, V.A. Peralta, V.H. Gonzalez Martinez, Marcelo M. Cavalcanti
Publikováno v:
Journal of Differential Equations. 269:8212-8268
In this paper we prove stability results for a semilinear hyperbolic coupled system subject to a viscoelastic localized damping acting in the first equation and a frictional localized one acting in the second equation of the system. We divide the pro
Autor:
Sabeur Mansouri, Zayd Hajjej, M.R. Astudillo Rojas, V.H. Gonzalez Martinez, Marcelo M. Cavalcanti, V. N. Domingos Cavalcanti
Publikováno v:
Journal of Differential Equations. 268:447-489
We consider a strongly coupled Klein-Gordon system posed in an inhomogeneous medium Ω with smooth boundary ∂Ω subject to a local damping distributed around a neighborhood ω of the boundary according to the Geometric Control Condition. We show th
Publikováno v:
Journal of Dynamics and Differential Equations.
Autor:
M. A. Jorge Silva, V. N. Domingos Cavalcanti, J. P. Zanchetta, Marcelo M. Cavalcanti, Wellington J. Corrêa
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 72
This work is concerned with a semilinear non-homogeneous Timoshenko system under the effect of two nonlinear localized frictional damping mechanisms. The main goal is to prove its uniform stability by imposing minimal amount of support for the dampin
Publikováno v:
Journal of Differential Equations. 264:6535-6584
In this paper we discuss the asymptotic stability as well as the well-posedness of the damped wave equation posed on a bounded domain Ω of R n , n ≥ 2 , ρ ( x ) u t t − Δ u + ∫ 0 ∞ g ( s ) div [ a ( x ) ∇ u ( ⋅ , t − s ) ] d s + b (
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The Klein Gordon equation subject to a nonlinear and locally distributed damping, posed in a complete and non compact n dimensional Riemannian manifold $$(\mathcal {M}^n,\mathbf {g})$$ without boundary is considered. Let us assume that the dissipativ