Zobrazeno 1 - 10
of 33
pro vyhledávání: '"V. N. Berestovskii"'
Autor:
V. N. Berestovskii
Publikováno v:
Siberian Mathematical Journal. 63:834-848
Autor:
V. N. Berestovskii, I. A. Zubareva
Publikováno v:
Siberian Mathematical Journal. 63:620-636
Autor:
Y.G. Nikonorov, V. N. Berestovskii
Publikováno v:
Владикавказский математический журнал. :51-61
This survey is devoted to recently obtained results on finite homogeneousmetric spaces. The main subject of discussion is the classification of regular and semiregular polytopes in Euclidean spacesby whether or not their vertex sets have the normal h
Autor:
Yu. G. Nikonorov, V. N. Berestovskii
Publikováno v:
Matematicheskie trudy. 24:3-34
Autor:
Irina Zubareva, V. N. Berestovskii
Publikováno v:
Sibirskii matematicheskii zhurnal. 62:477-497
Autor:
V. N. Berestovskii, I. A. Zubareva
Publikováno v:
Siberian Mathematical Journal. 61:575-588
Using the Pontryagin maximum principle for the time-optimal problem in coordinates of the first kind, we find the extremals of an arbitrary left-invariant sub-Finsler metric on the Engel group defined by a distribution of rank 2.
Autor:
V. N. Berestovskii, Irina Zubareva
Publikováno v:
Sibirskii matematicheskii zhurnal. 61:735-751
Autor:
V. N. Berestovskii
Publikováno v:
Siberian Mathematical Journal. 60:10-19
In the short note of 1927, Urysohn constructed the metric space R that is nowhere locally separable. There is no publication with indications that R is a (noncomplete) ℝ-tree that has valency c at each point. The author in 1989, as well as Polterov
Autor:
V. N. Berestovskii
Publikováno v:
Sibirskii matematicheskii zhurnal. 60:306-322
We study the Lorentzian manifolds M1, M2, M3, and M4 obtained by small changes of the standard Euclidean metric on ℝ4 with the punctured origin O. The spaces M1 and M4 are closed isotropic space-time models. The manifolds M3 and M4 (respectively, M
Autor:
V. N. Berestovskii
Publikováno v:
Sibirskii matematicheskii zhurnal. 60:14-27