Zobrazeno 1 - 10
of 116
pro vyhledávání: '"V. L. Girko"'
Autor:
V. L. Girko
Publikováno v:
Random Operators and Stochastic Equations. 11:167-212
Autor:
V. L. Girko
Publikováno v:
Theory of Probability & Its Applications. 42:121-129
The paper proves the central limit theorem (the logarithmic law) for random determinants under weaker conditions than the author used earlier: if for any n the random elements $\xi_{ij}^{(n)}$, $i,j=1\lz n$, of the matrix $\Xi=(\xi_{ij}/n)$ are indep
Autor:
V. L. GIRKO
Publikováno v:
rose. 5:81-102
Autor:
V. L. Girko
Publikováno v:
Theory of Probability & Its Applications. 40:635-644
The paper extends the Wegner semicircular law to symmetric matrices with independent random blocks obeying a Lindeberg-type condition and allowing arbitrary dependence of elements within each block. It is proved that the Stieltjes transform of the li
Autor:
V. L. Girko
Publikováno v:
Ukrainian Mathematical Journal. 47:1341-1355
We study asymptotic properties of normalized spectral functions of empirical covariance matrices in the case of a nonnormal population. It is shown that the Stieltjes transforms of such functions satisfy a socalled canonical spectral equation.
Autor:
V. L. Girko
Publikováno v:
Theory of Probability & Its Applications. 39:685-691
We consider a sequence of symmetric real-valued random matrices $\Xi _n = (\xi _{ij}^{(n)} )_{i,j = 1}^n ,n = 1,2, \ldots $, whose entries $\xi _{ij}^{(n)} ,i \geqq j,i,j = 1, \ldots ,n,$, are independent for each n, whereas ${\bf E}\xi _{ij}^{(n)} =
Autor:
V. L. Girko, O. G. Chaika
Publikováno v:
Journal of Mathematical Sciences. 68:805-809
In this paper we use limit theorems for Borel functions of random variables to find the second moment of the spectral distribution function of the distances between adjacent eigenvalues of a random matrix. Since random matrices are used to study the
Autor:
V. L. Girko
Publikováno v:
Journal of Mathematical Sciences. 68:800-804
Autor:
R. T. Mysak, V. L. Girko
Publikováno v:
Journal of Soviet Mathematics. 67:3031-3034
Using perturbation formulas for eigenvalues of linear operators, an equation is obtained for the extremal values of certain nonnegative bounded functions. Formulas are obtained for the derivative of regularizing maximal eigenvalues of matrices which