Zobrazeno 1 - 10
of 26
pro vyhledávání: '"V. L. Chernyshev"'
Autor:
D. V. Pyat’ko, V. L. Chernyshev
Publikováno v:
Mathematical Notes. 113:538-551
Publikováno v:
Functional Analysis and Its Applications. 56:299-309
Publikováno v:
Theoretical and Mathematical Physics. 207:487-493
We study a semi-infinite metric path graph and construct the long-time asymptotic logarithm of the number of possible endpoints of a random walk.
Publikováno v:
Teoreticheskaya i Matematicheskaya Fizika. 207:104-111
Изучается метрический граф - полубесконечная цепь. Построена асимптотика логарифма числа возможных конечных положений случайного блуж
Publikováno v:
Russian Journal of Mathematical Physics. 27:456-468
Let $$00$$ . For any $$T>0$$ and $$k\in\overline{\mathbb{N}}=\mathbb{N}\cup\{\infty\}$$ , let $$N(k,T)$$ be the number of solutions $$\{n_j\}_{j=1}^k$$ , $$n_j\in \mathbb{N}_0=\mathbb{N}\cup\{0\}$$ , of the inequality $$\sum_{j=1}^{k}n_jt_j\le T$$ .
Polynomial approximation for the number of all possible endpoints of a random walk on a metric graph
Autor:
V. L. Chernyshev, A. A. Tolchennikov
Publikováno v:
Electronic Notes in Discrete Mathematics. 70:31-35
The asymptotics of the number of possible endpoints of a random walk on a metric graph with incommensurable edge lengths is found.
Publikováno v:
Mathematical Notes. 104:939-942
Autor:
V. L. Chernyshev, A. A. Tolchennikov
Publikováno v:
Regular and Chaotic Dynamics. 22:937-948
We consider the problem of determining the asymptotics for the number of points moving along a metric graph. This problem is motivated by the problem of the evolution of wave packets, which at the initial moment of time are localized in a small neigh
Autor:
A. A. Tolchennikov, V. L. Chernyshev
Publikováno v:
Russian Journal of Mathematical Physics. 24:290-298
In the problem of determining the asymptotics for the number of points moving along a metric tree, a polynomial approximation that uses Barnes’ multiple Bernoulli polynomials is found. The connection between the second term of the asymptotic expans
Publikováno v:
Doklady Mathematics. 95:226-229
We consider an arithmetic semigroup with exponential growth of the counting function of abstract primes. The Bose–Einstein statistics provides the most probable mean occupation numbers in the sense that large deviations of a sum of occupation numbe